MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercn2 Structured version   Unicode version

Theorem psercn2 22984
Description: Since by pserulm 22983 the series converges uniformly, it is also continuous by ulmcn 22960. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
pserf.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
pserf.f  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
pserf.a  |-  ( ph  ->  A : NN0 --> CC )
pserf.r  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
pserulm.h  |-  H  =  ( i  e.  NN0  |->  ( y  e.  S  |->  (  seq 0 (  +  ,  ( G `
 y ) ) `
 i ) ) )
pserulm.m  |-  ( ph  ->  M  e.  RR )
pserulm.l  |-  ( ph  ->  M  <  R )
pserulm.y  |-  ( ph  ->  S  C_  ( `' abs " ( 0 [,] M ) ) )
Assertion
Ref Expression
psercn2  |-  ( ph  ->  F  e.  ( S
-cn-> CC ) )
Distinct variable groups:    j, n, r, x, y, A    i,
j, y, H    i, M, j, y    x, i, r    i, G, j, r, y    S, i, j, y    ph, i,
j, y
Allowed substitution hints:    ph( x, n, r)    A( i)    R( x, y, i, j, n, r)    S( x, n, r)    F( x, y, i, j, n, r)    G( x, n)    H( x, n, r)    M( x, n, r)

Proof of Theorem psercn2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 11116 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 10872 . 2  |-  ( ph  ->  0  e.  ZZ )
3 pserulm.y . . . . . . 7  |-  ( ph  ->  S  C_  ( `' abs " ( 0 [,] M ) ) )
4 cnvimass 5345 . . . . . . . 8  |-  ( `' abs " ( 0 [,] M ) ) 
C_  dom  abs
5 absf 13252 . . . . . . . . 9  |-  abs : CC
--> RR
65fdmi 5718 . . . . . . . 8  |-  dom  abs  =  CC
74, 6sseqtri 3521 . . . . . . 7  |-  ( `' abs " ( 0 [,] M ) ) 
C_  CC
83, 7syl6ss 3501 . . . . . 6  |-  ( ph  ->  S  C_  CC )
98adantr 463 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  S  C_  CC )
109resmptd 5313 . . . 4  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( (
y  e.  CC  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) )  |`  S )  =  ( y  e.  S  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) ) )
11 simplr 753 . . . . . . . . 9  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  (
0 ... i ) )  ->  y  e.  CC )
12 elfznn0 11775 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... i )  ->  k  e.  NN0 )
1312adantl 464 . . . . . . . . 9  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  (
0 ... i ) )  ->  k  e.  NN0 )
14 pserf.g . . . . . . . . . 10  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
1514pserval2 22972 . . . . . . . . 9  |-  ( ( y  e.  CC  /\  k  e.  NN0 )  -> 
( ( G `  y ) `  k
)  =  ( ( A `  k )  x.  ( y ^
k ) ) )
1611, 13, 15syl2anc 659 . . . . . . . 8  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  (
0 ... i ) )  ->  ( ( G `
 y ) `  k )  =  ( ( A `  k
)  x.  ( y ^ k ) ) )
17 simpr 459 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  e.  NN0 )
1817, 1syl6eleq 2552 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  e.  ( ZZ>= `  0 )
)
1918adantr 463 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  ->  i  e.  ( ZZ>= `  0 )
)
20 pserf.a . . . . . . . . . . . . 13  |-  ( ph  ->  A : NN0 --> CC )
2120adantr 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  NN0 )  ->  A : NN0
--> CC )
2221ffvelrnda 6007 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
2322adantlr 712 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
24 expcl 12166 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  k  e.  NN0 )  -> 
( y ^ k
)  e.  CC )
2524adantll 711 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  NN0 )  ->  ( y ^
k )  e.  CC )
2623, 25mulcld 9605 . . . . . . . . 9  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A `
 k )  x.  ( y ^ k
) )  e.  CC )
2712, 26sylan2 472 . . . . . . . 8  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  (
0 ... i ) )  ->  ( ( A `
 k )  x.  ( y ^ k
) )  e.  CC )
2816, 19, 27fsumser 13634 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  ->  sum_ k  e.  ( 0 ... i
) ( ( A `
 k )  x.  ( y ^ k
) )  =  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) )
2928mpteq2dva 4525 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... i ) ( ( A `  k )  x.  (
y ^ k ) ) )  =  ( y  e.  CC  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) ) )
30 eqid 2454 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
3130cnfldtopon 21456 . . . . . . . . 9  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
3231a1i 11 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( TopOpen ` fld )  e.  (TopOn `  CC )
)
33 fzfid 12065 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( 0 ... i )  e. 
Fin )
3431a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  ( TopOpen
` fld
)  e.  (TopOn `  CC ) )
35 ffvelrn 6005 . . . . . . . . . . 11  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
3621, 12, 35syl2an 475 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  ( A `  k )  e.  CC )
3734, 34, 36cnmptc 20329 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  (
y  e.  CC  |->  ( A `  k ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
3812adantl 464 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  k  e.  NN0 )
3930expcn 21542 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( y  e.  CC  |->  ( y ^ k ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen ` fld ) ) )
4038, 39syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  (
y  e.  CC  |->  ( y ^ k ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
4130mulcn 21537 . . . . . . . . . 10  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
4241a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) ) )
4334, 37, 40, 42cnmpt12f 20333 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  (
y  e.  CC  |->  ( ( A `  k
)  x.  ( y ^ k ) ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
4430, 32, 33, 43fsumcn 21540 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... i ) ( ( A `  k )  x.  (
y ^ k ) ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
4530cncfcn1 21580 . . . . . . 7  |-  ( CC
-cn-> CC )  =  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) )
4644, 45syl6eleqr 2553 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... i ) ( ( A `  k )  x.  (
y ^ k ) ) )  e.  ( CC -cn-> CC ) )
4729, 46eqeltrrd 2543 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  CC  |->  (  seq 0
(  +  ,  ( G `  y ) ) `  i ) )  e.  ( CC
-cn-> CC ) )
48 rescncf 21567 . . . . 5  |-  ( S 
C_  CC  ->  ( ( y  e.  CC  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) )  e.  ( CC -cn-> CC )  ->  ( ( y  e.  CC  |->  (  seq 0 (  +  , 
( G `  y
) ) `  i
) )  |`  S )  e.  ( S -cn-> CC ) ) )
499, 47, 48sylc 60 . . . 4  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( (
y  e.  CC  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) )  |`  S )  e.  ( S -cn-> CC ) )
5010, 49eqeltrrd 2543 . . 3  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  S  |->  (  seq 0 (  +  , 
( G `  y
) ) `  i
) )  e.  ( S -cn-> CC ) )
51 pserulm.h . . 3  |-  H  =  ( i  e.  NN0  |->  ( y  e.  S  |->  (  seq 0 (  +  ,  ( G `
 y ) ) `
 i ) ) )
5250, 51fmptd 6031 . 2  |-  ( ph  ->  H : NN0 --> ( S
-cn-> CC ) )
53 pserf.f . . 3  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
54 pserf.r . . 3  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
55 pserulm.m . . 3  |-  ( ph  ->  M  e.  RR )
56 pserulm.l . . 3  |-  ( ph  ->  M  <  R )
5714, 53, 20, 54, 51, 55, 56, 3pserulm 22983 . 2  |-  ( ph  ->  H ( ~~> u `  S ) F )
581, 2, 52, 57ulmcn 22960 1  |-  ( ph  ->  F  e.  ( S
-cn-> CC ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   {crab 2808    C_ wss 3461   class class class wbr 4439    |-> cmpt 4497   `'ccnv 4987   dom cdm 4988    |` cres 4990   "cima 4991   -->wf 5566   ` cfv 5570  (class class class)co 6270   supcsup 7892   CCcc 9479   RRcr 9480   0cc0 9481    + caddc 9484    x. cmul 9486   RR*cxr 9616    < clt 9617   NN0cn0 10791   ZZ>=cuz 11082   [,]cicc 11535   ...cfz 11675    seqcseq 12089   ^cexp 12148   abscabs 13149    ~~> cli 13389   sum_csu 13590   TopOpenctopn 14911  ℂfldccnfld 18615  TopOnctopon 19562    Cn ccn 19892    tX ctx 20227   -cn->ccncf 21546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-fl 11910  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-limsup 13376  df-clim 13393  df-rlim 13394  df-sum 13591  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-starv 14799  df-sca 14800  df-vsca 14801  df-ip 14802  df-tset 14803  df-ple 14804  df-ds 14806  df-unif 14807  df-hom 14808  df-cco 14809  df-rest 14912  df-topn 14913  df-0g 14931  df-gsum 14932  df-topgen 14933  df-pt 14934  df-prds 14937  df-xrs 14991  df-qtop 14996  df-imas 14997  df-xps 14999  df-mre 15075  df-mrc 15076  df-acs 15078  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-submnd 16166  df-mulg 16259  df-cntz 16554  df-cmn 16999  df-psmet 18606  df-xmet 18607  df-met 18608  df-bl 18609  df-mopn 18610  df-cnfld 18616  df-top 19566  df-bases 19568  df-topon 19569  df-topsp 19570  df-cn 19895  df-cnp 19896  df-tx 20229  df-hmeo 20422  df-xms 20989  df-ms 20990  df-tms 20991  df-cncf 21548  df-ulm 22938
This theorem is referenced by:  psercn  22987
  Copyright terms: Public domain W3C validator