MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercn2 Structured version   Unicode version

Theorem psercn2 21773
Description: Since by pserulm 21772 the series converges uniformly, it is also continuous by ulmcn 21749. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
pserf.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
pserf.f  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
pserf.a  |-  ( ph  ->  A : NN0 --> CC )
pserf.r  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
pserulm.h  |-  H  =  ( i  e.  NN0  |->  ( y  e.  S  |->  (  seq 0 (  +  ,  ( G `
 y ) ) `
 i ) ) )
pserulm.m  |-  ( ph  ->  M  e.  RR )
pserulm.l  |-  ( ph  ->  M  <  R )
pserulm.y  |-  ( ph  ->  S  C_  ( `' abs " ( 0 [,] M ) ) )
Assertion
Ref Expression
psercn2  |-  ( ph  ->  F  e.  ( S
-cn-> CC ) )
Distinct variable groups:    j, n, r, x, y, A    i,
j, y, H    i, M, j, y    x, i, r    i, G, j, r, y    S, i, j, y    ph, i,
j, y
Allowed substitution hints:    ph( x, n, r)    A( i)    R( x, y, i, j, n, r)    S( x, n, r)    F( x, y, i, j, n, r)    G( x, n)    H( x, n, r)    M( x, n, r)

Proof of Theorem psercn2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 10883 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 10646 . 2  |-  ( ph  ->  0  e.  ZZ )
3 pserulm.y . . . . . . 7  |-  ( ph  ->  S  C_  ( `' abs " ( 0 [,] M ) ) )
4 cnvimass 5177 . . . . . . . 8  |-  ( `' abs " ( 0 [,] M ) ) 
C_  dom  abs
5 absf 12809 . . . . . . . . 9  |-  abs : CC
--> RR
65fdmi 5552 . . . . . . . 8  |-  dom  abs  =  CC
74, 6sseqtri 3376 . . . . . . 7  |-  ( `' abs " ( 0 [,] M ) ) 
C_  CC
83, 7syl6ss 3356 . . . . . 6  |-  ( ph  ->  S  C_  CC )
98adantr 462 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  S  C_  CC )
10 resmpt 5144 . . . . 5  |-  ( S 
C_  CC  ->  ( ( y  e.  CC  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) )  |`  S )  =  ( y  e.  S  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) ) )
119, 10syl 16 . . . 4  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( (
y  e.  CC  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) )  |`  S )  =  ( y  e.  S  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) ) )
12 simplr 747 . . . . . . . . 9  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  (
0 ... i ) )  ->  y  e.  CC )
13 elfznn0 11468 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... i )  ->  k  e.  NN0 )
1413adantl 463 . . . . . . . . 9  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  (
0 ... i ) )  ->  k  e.  NN0 )
15 pserf.g . . . . . . . . . 10  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
1615pserval2 21761 . . . . . . . . 9  |-  ( ( y  e.  CC  /\  k  e.  NN0 )  -> 
( ( G `  y ) `  k
)  =  ( ( A `  k )  x.  ( y ^
k ) ) )
1712, 14, 16syl2anc 654 . . . . . . . 8  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  (
0 ... i ) )  ->  ( ( G `
 y ) `  k )  =  ( ( A `  k
)  x.  ( y ^ k ) ) )
18 simpr 458 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  e.  NN0 )
1918, 1syl6eleq 2523 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  e.  ( ZZ>= `  0 )
)
2019adantr 462 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  ->  i  e.  ( ZZ>= `  0 )
)
21 pserf.a . . . . . . . . . . . . 13  |-  ( ph  ->  A : NN0 --> CC )
2221adantr 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  NN0 )  ->  A : NN0
--> CC )
2322ffvelrnda 5831 . . . . . . . . . . 11  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
2423adantlr 707 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
25 expcl 11867 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  k  e.  NN0 )  -> 
( y ^ k
)  e.  CC )
2625adantll 706 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  NN0 )  ->  ( y ^
k )  e.  CC )
2724, 26mulcld 9394 . . . . . . . . 9  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A `
 k )  x.  ( y ^ k
) )  e.  CC )
2813, 27sylan2 471 . . . . . . . 8  |-  ( ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  /\  k  e.  (
0 ... i ) )  ->  ( ( A `
 k )  x.  ( y ^ k
) )  e.  CC )
2917, 20, 28fsumser 13191 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  y  e.  CC )  ->  sum_ k  e.  ( 0 ... i
) ( ( A `
 k )  x.  ( y ^ k
) )  =  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) )
3029mpteq2dva 4366 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... i ) ( ( A `  k )  x.  (
y ^ k ) ) )  =  ( y  e.  CC  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) ) )
31 eqid 2433 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
3231cnfldtopon 20204 . . . . . . . . 9  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
3332a1i 11 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( TopOpen ` fld )  e.  (TopOn `  CC )
)
34 fzfid 11779 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( 0 ... i )  e. 
Fin )
3532a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  ( TopOpen
` fld
)  e.  (TopOn `  CC ) )
36 ffvelrn 5829 . . . . . . . . . . 11  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
3722, 13, 36syl2an 474 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  ( A `  k )  e.  CC )
3835, 35, 37cnmptc 19077 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  (
y  e.  CC  |->  ( A `  k ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
3913adantl 463 . . . . . . . . . 10  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  k  e.  NN0 )
4031expcn 20290 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( y  e.  CC  |->  ( y ^ k ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen ` fld ) ) )
4139, 40syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  (
y  e.  CC  |->  ( y ^ k ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
4231mulcn 20285 . . . . . . . . . 10  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
4342a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) ) )
4435, 38, 41, 43cnmpt12f 19081 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  NN0 )  /\  k  e.  ( 0 ... i
) )  ->  (
y  e.  CC  |->  ( ( A `  k
)  x.  ( y ^ k ) ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
4531, 33, 34, 44fsumcn 20288 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... i ) ( ( A `  k )  x.  (
y ^ k ) ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
4631cncfcn1 20328 . . . . . . 7  |-  ( CC
-cn-> CC )  =  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) )
4745, 46syl6eleqr 2524 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  CC  |->  sum_ k  e.  ( 0 ... i ) ( ( A `  k )  x.  (
y ^ k ) ) )  e.  ( CC -cn-> CC ) )
4830, 47eqeltrrd 2508 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  CC  |->  (  seq 0
(  +  ,  ( G `  y ) ) `  i ) )  e.  ( CC
-cn-> CC ) )
49 rescncf 20315 . . . . 5  |-  ( S 
C_  CC  ->  ( ( y  e.  CC  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) )  e.  ( CC -cn-> CC )  ->  ( ( y  e.  CC  |->  (  seq 0 (  +  , 
( G `  y
) ) `  i
) )  |`  S )  e.  ( S -cn-> CC ) ) )
509, 48, 49sylc 60 . . . 4  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( (
y  e.  CC  |->  (  seq 0 (  +  ,  ( G `  y ) ) `  i ) )  |`  S )  e.  ( S -cn-> CC ) )
5111, 50eqeltrrd 2508 . . 3  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( y  e.  S  |->  (  seq 0 (  +  , 
( G `  y
) ) `  i
) )  e.  ( S -cn-> CC ) )
52 pserulm.h . . 3  |-  H  =  ( i  e.  NN0  |->  ( y  e.  S  |->  (  seq 0 (  +  ,  ( G `
 y ) ) `
 i ) ) )
5351, 52fmptd 5855 . 2  |-  ( ph  ->  H : NN0 --> ( S
-cn-> CC ) )
54 pserf.f . . 3  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
55 pserf.r . . 3  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
56 pserulm.m . . 3  |-  ( ph  ->  M  e.  RR )
57 pserulm.l . . 3  |-  ( ph  ->  M  <  R )
5815, 54, 21, 55, 52, 56, 57, 3pserulm 21772 . 2  |-  ( ph  ->  H ( ~~> u `  S ) F )
591, 2, 53, 58ulmcn 21749 1  |-  ( ph  ->  F  e.  ( S
-cn-> CC ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755   {crab 2709    C_ wss 3316   class class class wbr 4280    e. cmpt 4338   `'ccnv 4826   dom cdm 4827    |` cres 4829   "cima 4830   -->wf 5402   ` cfv 5406  (class class class)co 6080   supcsup 7678   CCcc 9268   RRcr 9269   0cc0 9270    + caddc 9273    x. cmul 9275   RR*cxr 9405    < clt 9406   NN0cn0 10567   ZZ>=cuz 10849   [,]cicc 11291   ...cfz 11424    seqcseq 11790   ^cexp 11849   abscabs 12707    ~~> cli 12946   sum_csu 13147   TopOpenctopn 14343  ℂfldccnfld 17662  TopOnctopon 18341    Cn ccn 18670    tX ctx 18975   -cn->ccncf 20294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348  ax-addf 9349  ax-mulf 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-er 7089  df-map 7204  df-pm 7205  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-q 10942  df-rp 10980  df-xneg 11077  df-xadd 11078  df-xmul 11079  df-ico 11294  df-icc 11295  df-fz 11425  df-fzo 11533  df-fl 11626  df-seq 11791  df-exp 11850  df-hash 12088  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-limsup 12933  df-clim 12950  df-rlim 12951  df-sum 13148  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-starv 14236  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-hom 14245  df-cco 14246  df-rest 14344  df-topn 14345  df-0g 14363  df-gsum 14364  df-topgen 14365  df-pt 14366  df-prds 14369  df-xrs 14423  df-qtop 14428  df-imas 14429  df-xps 14431  df-mre 14507  df-mrc 14508  df-acs 14510  df-mnd 15398  df-submnd 15448  df-mulg 15528  df-cntz 15815  df-cmn 16259  df-psmet 17653  df-xmet 17654  df-met 17655  df-bl 17656  df-mopn 17657  df-cnfld 17663  df-top 18345  df-bases 18347  df-topon 18348  df-topsp 18349  df-cn 18673  df-cnp 18674  df-tx 18977  df-hmeo 19170  df-xms 19737  df-ms 19738  df-tms 19739  df-cncf 20296  df-ulm 21727
This theorem is referenced by:  psercn  21776
  Copyright terms: Public domain W3C validator