MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercn Structured version   Unicode version

Theorem psercn 21871
Description: An infinite series converges to a continuous function on the open disk of radius  R, where  R is the radius of convergence of the series. (Contributed by Mario Carneiro, 4-Mar-2015.)
Hypotheses
Ref Expression
pserf.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
pserf.f  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
pserf.a  |-  ( ph  ->  A : NN0 --> CC )
pserf.r  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
psercn.s  |-  S  =  ( `' abs " (
0 [,) R ) )
psercn.m  |-  M  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )
Assertion
Ref Expression
psercn  |-  ( ph  ->  F  e.  ( S
-cn-> CC ) )
Distinct variable groups:    j, a, n, r, x, y, A   
j, M, y    j, G, r, y    S, a, j, y    F, a    ph, a, j, y
Allowed substitution hints:    ph( x, n, r)    R( x, y, j, n, r, a)    S( x, n, r)    F( x, y, j, n, r)    G( x, n, a)    M( x, n, r, a)

Proof of Theorem psercn
Dummy variables  k 
s  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumex 13157 . . . . . 6  |-  sum_ j  e.  NN0  ( ( G `
 y ) `  j )  e.  _V
21rgenw 2778 . . . . 5  |-  A. y  e.  S  sum_ j  e. 
NN0  ( ( G `
 y ) `  j )  e.  _V
3 pserf.f . . . . . 6  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
43fnmpt 5532 . . . . 5  |-  ( A. y  e.  S  sum_ j  e.  NN0  ( ( G `  y ) `
 j )  e. 
_V  ->  F  Fn  S
)
52, 4mp1i 12 . . . 4  |-  ( ph  ->  F  Fn  S )
6 psercn.s . . . . . . . . . . 11  |-  S  =  ( `' abs " (
0 [,) R ) )
7 cnvimass 5184 . . . . . . . . . . . 12  |-  ( `' abs " ( 0 [,) R ) ) 
C_  dom  abs
8 absf 12817 . . . . . . . . . . . . 13  |-  abs : CC
--> RR
98fdmi 5559 . . . . . . . . . . . 12  |-  dom  abs  =  CC
107, 9sseqtri 3383 . . . . . . . . . . 11  |-  ( `' abs " ( 0 [,) R ) ) 
C_  CC
116, 10eqsstri 3381 . . . . . . . . . 10  |-  S  C_  CC
1211a1i 11 . . . . . . . . 9  |-  ( ph  ->  S  C_  CC )
1312sselda 3351 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  CC )
14 0cn 9370 . . . . . . . . . . 11  |-  0  e.  CC
15 eqid 2438 . . . . . . . . . . . 12  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
1615cnmetdval 20330 . . . . . . . . . . 11  |-  ( ( 0  e.  CC  /\  a  e.  CC )  ->  ( 0 ( abs 
o.  -  ) a
)  =  ( abs `  ( 0  -  a
) ) )
1714, 13, 16sylancr 663 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( abs  o.  -  ) a )  =  ( abs `  (
0  -  a ) ) )
18 abssub 12806 . . . . . . . . . . 11  |-  ( ( 0  e.  CC  /\  a  e.  CC )  ->  ( abs `  (
0  -  a ) )  =  ( abs `  ( a  -  0 ) ) )
1914, 13, 18sylancr 663 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  ( 0  -  a ) )  =  ( abs `  (
a  -  0 ) ) )
2013subid1d 9700 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  S )  ->  (
a  -  0 )  =  a )
2120fveq2d 5690 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  ( a  - 
0 ) )  =  ( abs `  a
) )
2217, 19, 213eqtrd 2474 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( abs  o.  -  ) a )  =  ( abs `  a
) )
23 breq2 4291 . . . . . . . . . . 11  |-  ( ( ( ( abs `  a
)  +  R )  /  2 )  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )  ->  ( ( abs `  a )  < 
( ( ( abs `  a )  +  R
)  /  2 )  <-> 
( abs `  a
)  <  if ( R  e.  RR , 
( ( ( abs `  a )  +  R
)  /  2 ) ,  ( ( abs `  a )  +  1 ) ) ) )
24 breq2 4291 . . . . . . . . . . 11  |-  ( ( ( abs `  a
)  +  1 )  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )  ->  ( ( abs `  a )  < 
( ( abs `  a
)  +  1 )  <-> 
( abs `  a
)  <  if ( R  e.  RR , 
( ( ( abs `  a )  +  R
)  /  2 ) ,  ( ( abs `  a )  +  1 ) ) ) )
25 simpr 461 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  S )
2625, 6syl6eleq 2528 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  ( `' abs " (
0 [,) R ) ) )
27 ffn 5554 . . . . . . . . . . . . . . . . . 18  |-  ( abs
: CC --> RR  ->  abs 
Fn  CC )
28 elpreima 5818 . . . . . . . . . . . . . . . . . 18  |-  ( abs 
Fn  CC  ->  ( a  e.  ( `' abs " ( 0 [,) R
) )  <->  ( a  e.  CC  /\  ( abs `  a )  e.  ( 0 [,) R ) ) ) )
298, 27, 28mp2b 10 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  ( `' abs " ( 0 [,) R
) )  <->  ( a  e.  CC  /\  ( abs `  a )  e.  ( 0 [,) R ) ) )
3026, 29sylib 196 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  a  e.  S )  ->  (
a  e.  CC  /\  ( abs `  a )  e.  ( 0 [,) R ) ) )
3130simprd 463 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  e.  ( 0 [,) R
) )
32 0re 9378 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
33 iccssxr 11370 . . . . . . . . . . . . . . . . 17  |-  ( 0 [,] +oo )  C_  RR*
34 pserf.g . . . . . . . . . . . . . . . . . . 19  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
35 pserf.a . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A : NN0 --> CC )
36 pserf.r . . . . . . . . . . . . . . . . . . 19  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
3734, 35, 36radcnvcl 21862 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  R  e.  ( 0 [,] +oo ) )
3837adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  a  e.  S )  ->  R  e.  ( 0 [,] +oo ) )
3933, 38sseldi 3349 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  a  e.  S )  ->  R  e.  RR* )
40 elico2 11351 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  R  e.  RR* )  -> 
( ( abs `  a
)  e.  ( 0 [,) R )  <->  ( ( abs `  a )  e.  RR  /\  0  <_ 
( abs `  a
)  /\  ( abs `  a )  <  R
) ) )
4132, 39, 40sylancr 663 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  e.  S )  ->  (
( abs `  a
)  e.  ( 0 [,) R )  <->  ( ( abs `  a )  e.  RR  /\  0  <_ 
( abs `  a
)  /\  ( abs `  a )  <  R
) ) )
4231, 41mpbid 210 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  a  e.  S )  ->  (
( abs `  a
)  e.  RR  /\  0  <_  ( abs `  a
)  /\  ( abs `  a )  <  R
) )
4342simp3d 1002 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
R )
4443adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  S )  /\  R  e.  RR )  ->  ( abs `  a )  < 
R )
4513abscld 12914 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  e.  RR )
46 avglt1 10554 . . . . . . . . . . . . 13  |-  ( ( ( abs `  a
)  e.  RR  /\  R  e.  RR )  ->  ( ( abs `  a
)  <  R  <->  ( abs `  a )  <  (
( ( abs `  a
)  +  R )  /  2 ) ) )
4745, 46sylan 471 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  S )  /\  R  e.  RR )  ->  (
( abs `  a
)  <  R  <->  ( abs `  a )  <  (
( ( abs `  a
)  +  R )  /  2 ) ) )
4844, 47mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  S )  /\  R  e.  RR )  ->  ( abs `  a )  < 
( ( ( abs `  a )  +  R
)  /  2 ) )
4945ltp1d 10255 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
( ( abs `  a
)  +  1 ) )
5049adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  S )  /\  -.  R  e.  RR )  ->  ( abs `  a
)  <  ( ( abs `  a )  +  1 ) )
5123, 24, 48, 50ifbothda 3819 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) ) )
52 psercn.m . . . . . . . . . 10  |-  M  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )
5351, 52syl6breqr 4327 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
M )
5422, 53eqbrtrd 4307 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( abs  o.  -  ) a )  <  M )
55 cnxmet 20332 . . . . . . . . . 10  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
5655a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
5714a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  0  e.  CC )
5834, 3, 35, 36, 6, 52psercnlem1 21870 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  S )  ->  ( M  e.  RR+  /\  ( abs `  a )  < 
M  /\  M  <  R ) )
5958simp1d 1000 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR+ )
6059rpxrd 11020 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR* )
61 elbl 19943 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  M  e.  RR* )  ->  (
a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  <->  ( a  e.  CC  /\  ( 0 ( abs  o.  -  ) a )  < 
M ) ) )
6256, 57, 60, 61syl3anc 1218 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  <->  ( a  e.  CC  /\  ( 0 ( abs  o.  -  ) a )  < 
M ) ) )
6313, 54, 62mpbir2and 913 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )
64 fvres 5699 . . . . . . 7  |-  ( a  e.  ( 0 (
ball `  ( abs  o. 
-  ) ) M )  ->  ( ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) ) `  a
)  =  ( F `
 a ) )
6563, 64syl 16 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  (
( F  |`  (
0 ( ball `  ( abs  o.  -  ) ) M ) ) `  a )  =  ( F `  a ) )
663reseq1i 5101 . . . . . . . . . 10  |-  ( F  |`  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  =  ( ( y  e.  S  |->  sum_ j  e.  NN0  (
( G `  y
) `  j )
)  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )
6734, 3, 35, 36, 6, 58psercnlem2 21869 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  (
a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  /\  (
0 ( ball `  ( abs  o.  -  ) ) M )  C_  ( `' abs " ( 0 [,] M ) )  /\  ( `' abs " ( 0 [,] M
) )  C_  S
) )
6867simp2d 1001 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  C_  ( `' abs " ( 0 [,] M ) ) )
6967simp3d 1002 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  S )  ->  ( `' abs " ( 0 [,] M ) ) 
C_  S )
7068, 69sstrd 3361 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  C_  S
)
71 resmpt 5151 . . . . . . . . . . 11  |-  ( ( 0 ( ball `  ( abs  o.  -  ) ) M )  C_  S  ->  ( ( y  e.  S  |->  sum_ j  e.  NN0  ( ( G `  y ) `  j
) )  |`  (
0 ( ball `  ( abs  o.  -  ) ) M ) )  =  ( y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  sum_ j  e.  NN0  ( ( G `
 y ) `  j ) ) )
7270, 71syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  (
( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )  |`  (
0 ( ball `  ( abs  o.  -  ) ) M ) )  =  ( y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  sum_ j  e.  NN0  ( ( G `
 y ) `  j ) ) )
7366, 72syl5eq 2482 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  =  ( y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  sum_ j  e.  NN0  ( ( G `
 y ) `  j ) ) )
74 eqid 2438 . . . . . . . . . 10  |-  ( y  e.  ( 0 (
ball `  ( abs  o. 
-  ) ) M )  |->  sum_ j  e.  NN0  ( ( G `  y ) `  j
) )  =  ( y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  sum_ j  e.  NN0  ( ( G `
 y ) `  j ) )
7535adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  A : NN0 --> CC )
76 fveq2 5686 . . . . . . . . . . . . . . 15  |-  ( k  =  y  ->  ( G `  k )  =  ( G `  y ) )
7776seqeq3d 11806 . . . . . . . . . . . . . 14  |-  ( k  =  y  ->  seq 0 (  +  , 
( G `  k
) )  =  seq 0 (  +  , 
( G `  y
) ) )
7877fveq1d 5688 . . . . . . . . . . . . 13  |-  ( k  =  y  ->  (  seq 0 (  +  , 
( G `  k
) ) `  s
)  =  (  seq 0 (  +  , 
( G `  y
) ) `  s
) )
7978cbvmptv 4378 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 (
ball `  ( abs  o. 
-  ) ) M )  |->  (  seq 0
(  +  ,  ( G `  k ) ) `  s ) )  =  ( y  e.  ( 0 (
ball `  ( abs  o. 
-  ) ) M )  |->  (  seq 0
(  +  ,  ( G `  y ) ) `  s ) )
80 fveq2 5686 . . . . . . . . . . . . 13  |-  ( s  =  i  ->  (  seq 0 (  +  , 
( G `  y
) ) `  s
)  =  (  seq 0 (  +  , 
( G `  y
) ) `  i
) )
8180mpteq2dv 4374 . . . . . . . . . . . 12  |-  ( s  =  i  ->  (
y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  (  seq 0 (  +  , 
( G `  y
) ) `  s
) )  =  ( y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  (  seq 0 (  +  , 
( G `  y
) ) `  i
) ) )
8279, 81syl5eq 2482 . . . . . . . . . . 11  |-  ( s  =  i  ->  (
k  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  (  seq 0 (  +  , 
( G `  k
) ) `  s
) )  =  ( y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  (  seq 0 (  +  , 
( G `  y
) ) `  i
) ) )
8382cbvmptv 4378 . . . . . . . . . 10  |-  ( s  e.  NN0  |->  ( k  e.  ( 0 (
ball `  ( abs  o. 
-  ) ) M )  |->  (  seq 0
(  +  ,  ( G `  k ) ) `  s ) ) )  =  ( i  e.  NN0  |->  ( y  e.  ( 0 (
ball `  ( abs  o. 
-  ) ) M )  |->  (  seq 0
(  +  ,  ( G `  y ) ) `  i ) ) )
8459rpred 11019 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR )
8558simp3d 1002 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  M  <  R )
8634, 74, 75, 36, 83, 84, 85, 68psercn2 21868 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  (
y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  sum_ j  e.  NN0  ( ( G `
 y ) `  j ) )  e.  ( ( 0 (
ball `  ( abs  o. 
-  ) ) M ) -cn-> CC ) )
8773, 86eqeltrd 2512 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  e.  ( ( 0 ( ball `  ( abs  o.  -  ) ) M )
-cn-> CC ) )
88 cncff 20449 . . . . . . . 8  |-  ( ( F  |`  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  e.  ( ( 0 (
ball `  ( abs  o. 
-  ) ) M ) -cn-> CC )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) ) : ( 0 ( ball `  ( abs  o.  -  ) ) M ) --> CC )
8987, 88syl 16 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) ) : ( 0 ( ball `  ( abs  o.  -  ) ) M ) --> CC )
9089, 63ffvelrnd 5839 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  (
( F  |`  (
0 ( ball `  ( abs  o.  -  ) ) M ) ) `  a )  e.  CC )
9165, 90eqeltrrd 2513 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  ( F `  a )  e.  CC )
9291ralrimiva 2794 . . . 4  |-  ( ph  ->  A. a  e.  S  ( F `  a )  e.  CC )
93 ffnfv 5864 . . . 4  |-  ( F : S --> CC  <->  ( F  Fn  S  /\  A. a  e.  S  ( F `  a )  e.  CC ) )
945, 92, 93sylanbrc 664 . . 3  |-  ( ph  ->  F : S --> CC )
9570, 11syl6ss 3363 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  C_  CC )
96 ssid 3370 . . . . . . . . 9  |-  CC  C_  CC
97 eqid 2438 . . . . . . . . . 10  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
98 eqid 2438 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  =  ( (
TopOpen ` fld )t  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )
9997cnfldtop 20343 . . . . . . . . . . . 12  |-  ( TopOpen ` fld )  e.  Top
10097cnfldtopon 20342 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
101100toponunii 18517 . . . . . . . . . . . . 13  |-  CC  =  U. ( TopOpen ` fld )
102101restid 14364 . . . . . . . . . . . 12  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
10399, 102ax-mp 5 . . . . . . . . . . 11  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
104103eqcomi 2442 . . . . . . . . . 10  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
10597, 98, 104cncfcn 20465 . . . . . . . . 9  |-  ( ( ( 0 ( ball `  ( abs  o.  -  ) ) M ) 
C_  CC  /\  CC  C_  CC )  ->  ( ( 0 ( ball `  ( abs  o.  -  ) ) M ) -cn-> CC )  =  ( ( (
TopOpen ` fld )t  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  Cn  ( TopOpen ` fld )
) )
10695, 96, 105sylancl 662 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
( 0 ( ball `  ( abs  o.  -  ) ) M )
-cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  Cn  ( TopOpen
` fld
) ) )
10787, 106eleqtrd 2514 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  e.  ( ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  Cn  ( TopOpen
` fld
) ) )
108101restuni 18746 . . . . . . . . 9  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( 0 ( ball `  ( abs  o.  -  ) ) M ) 
C_  CC )  -> 
( 0 ( ball `  ( abs  o.  -  ) ) M )  =  U. ( (
TopOpen ` fld )t  ( 0 ( ball `  ( abs  o.  -  ) ) M ) ) )
10999, 95, 108sylancr 663 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  =  U. ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) ) )
11063, 109eleqtrd 2514 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  U. ( ( TopOpen ` fld )t  (
0 ( ball `  ( abs  o.  -  ) ) M ) ) )
111 eqid 2438 . . . . . . . 8  |-  U. (
( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  =  U. ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )
112111cncnpi 18862 . . . . . . 7  |-  ( ( ( F  |`  (
0 ( ball `  ( abs  o.  -  ) ) M ) )  e.  ( ( ( TopOpen ` fld )t  (
0 ( ball `  ( abs  o.  -  ) ) M ) )  Cn  ( TopOpen ` fld ) )  /\  a  e.  U. ( ( TopOpen ` fld )t  (
0 ( ball `  ( abs  o.  -  ) ) M ) ) )  ->  ( F  |`  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  e.  ( ( ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  CnP  ( TopOpen
` fld
) ) `  a
) )
113107, 110, 112syl2anc 661 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  e.  ( ( ( ( TopOpen ` fld )t  (
0 ( ball `  ( abs  o.  -  ) ) M ) )  CnP  ( TopOpen ` fld ) ) `  a
) )
11499a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  ( TopOpen
` fld
)  e.  Top )
115 cnex 9355 . . . . . . . . . . 11  |-  CC  e.  _V
116115, 11ssexi 4432 . . . . . . . . . 10  |-  S  e. 
_V
117116a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  S  e.  _V )
118 restabs 18749 . . . . . . . . 9  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( 0 ( ball `  ( abs  o.  -  ) ) M ) 
C_  S  /\  S  e.  _V )  ->  (
( ( TopOpen ` fld )t  S )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  =  ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) ) )
119114, 70, 117, 118syl3anc 1218 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( TopOpen ` fld )t  S )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  =  ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) ) )
120119oveq1d 6101 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( ( TopOpen ` fld )t  S
)t  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  CnP  ( TopOpen ` fld )
)  =  ( ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  CnP  ( TopOpen
` fld
) ) )
121120fveq1d 5688 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( ( (
TopOpen ` fld )t  S )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  CnP  ( TopOpen
` fld
) ) `  a
)  =  ( ( ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  CnP  ( TopOpen
` fld
) ) `  a
) )
122113, 121eleqtrrd 2515 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  e.  ( ( ( ( (
TopOpen ` fld )t  S )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  CnP  ( TopOpen
` fld
) ) `  a
) )
123 resttop 18744 . . . . . . . 8  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  S  e.  _V )  ->  ( ( TopOpen ` fld )t  S )  e.  Top )
12499, 116, 123mp2an 672 . . . . . . 7  |-  ( (
TopOpen ` fld )t  S )  e.  Top
125124a1i 11 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  (
( TopOpen ` fld )t  S )  e.  Top )
126 df-ss 3337 . . . . . . . . . 10  |-  ( ( 0 ( ball `  ( abs  o.  -  ) ) M )  C_  S  <->  ( ( 0 ( ball `  ( abs  o.  -  ) ) M )  i^i  S )  =  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )
12770, 126sylib 196 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  (
( 0 ( ball `  ( abs  o.  -  ) ) M )  i^i  S )  =  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )
12897cnfldtopn 20341 . . . . . . . . . . . 12  |-  ( TopOpen ` fld )  =  ( MetOpen `  ( abs  o.  -  ) )
129128blopn 20055 . . . . . . . . . . 11  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  M  e.  RR* )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  e.  (
TopOpen ` fld ) )
13056, 57, 60, 129syl3anc 1218 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  e.  (
TopOpen ` fld ) )
131 elrestr 14359 . . . . . . . . . 10  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  S  e.  _V  /\  ( 0 ( ball `  ( abs  o.  -  ) ) M )  e.  ( TopOpen ` fld ) )  ->  (
( 0 ( ball `  ( abs  o.  -  ) ) M )  i^i  S )  e.  ( ( TopOpen ` fld )t  S ) )
132114, 117, 130, 131syl3anc 1218 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  (
( 0 ( ball `  ( abs  o.  -  ) ) M )  i^i  S )  e.  ( ( TopOpen ` fld )t  S ) )
133127, 132eqeltrrd 2513 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  e.  ( ( TopOpen ` fld )t  S ) )
134 isopn3i 18666 . . . . . . . 8  |-  ( ( ( ( TopOpen ` fld )t  S )  e.  Top  /\  ( 0 ( ball `  ( abs  o.  -  ) ) M )  e.  ( ( TopOpen ` fld )t  S
) )  ->  (
( int `  (
( TopOpen ` fld )t  S ) ) `  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  =  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )
135124, 133, 134sylancr 663 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  (
( int `  (
( TopOpen ` fld )t  S ) ) `  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  =  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )
13663, 135eleqtrrd 2515 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  ( ( int `  (
( TopOpen ` fld )t  S ) ) `  ( 0 ( ball `  ( abs  o.  -  ) ) M ) ) )
13794adantr 465 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  F : S --> CC )
138101restuni 18746 . . . . . . . 8  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  S  C_  CC )  ->  S  =  U. (
( TopOpen ` fld )t  S ) )
13999, 11, 138mp2an 672 . . . . . . 7  |-  S  = 
U. ( ( TopOpen ` fld )t  S
)
140139, 101cnprest 18873 . . . . . 6  |-  ( ( ( ( ( TopOpen ` fld )t  S
)  e.  Top  /\  ( 0 ( ball `  ( abs  o.  -  ) ) M ) 
C_  S )  /\  ( a  e.  ( ( int `  (
( TopOpen ` fld )t  S ) ) `  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  /\  F : S
--> CC ) )  -> 
( F  e.  ( ( ( ( TopOpen ` fld )t  S
)  CnP  ( TopOpen ` fld )
) `  a )  <->  ( F  |`  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  e.  ( ( ( ( ( TopOpen ` fld )t  S )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  CnP  ( TopOpen
` fld
) ) `  a
) ) )
141125, 70, 136, 137, 140syl22anc 1219 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  ( F  e.  ( (
( ( TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  a
)  <->  ( F  |`  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  e.  ( ( ( ( ( TopOpen ` fld )t  S
)t  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  CnP  ( TopOpen ` fld )
) `  a )
) )
142122, 141mpbird 232 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  F  e.  ( ( ( (
TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  a
) )
143142ralrimiva 2794 . . 3  |-  ( ph  ->  A. a  e.  S  F  e.  ( (
( ( TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  a
) )
144 resttopon 18745 . . . . 5  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  (
( TopOpen ` fld )t  S )  e.  (TopOn `  S ) )
145100, 11, 144mp2an 672 . . . 4  |-  ( (
TopOpen ` fld )t  S )  e.  (TopOn `  S )
146 cncnp 18864 . . . 4  |-  ( ( ( ( TopOpen ` fld )t  S )  e.  (TopOn `  S )  /\  ( TopOpen
` fld
)  e.  (TopOn `  CC ) )  ->  ( F  e.  ( (
( TopOpen ` fld )t  S )  Cn  ( TopOpen
` fld
) )  <->  ( F : S --> CC  /\  A. a  e.  S  F  e.  ( ( ( (
TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  a
) ) ) )
147145, 100, 146mp2an 672 . . 3  |-  ( F  e.  ( ( (
TopOpen ` fld )t  S )  Cn  ( TopOpen
` fld
) )  <->  ( F : S --> CC  /\  A. a  e.  S  F  e.  ( ( ( (
TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  a
) ) )
14894, 143, 147sylanbrc 664 . 2  |-  ( ph  ->  F  e.  ( ( ( TopOpen ` fld )t  S )  Cn  ( TopOpen
` fld
) ) )
149 eqid 2438 . . . 4  |-  ( (
TopOpen ` fld )t  S )  =  ( ( TopOpen ` fld )t  S )
15097, 149, 104cncfcn 20465 . . 3  |-  ( ( S  C_  CC  /\  CC  C_  CC )  ->  ( S -cn-> CC )  =  ( ( ( TopOpen ` fld )t  S )  Cn  ( TopOpen
` fld
) ) )
15111, 96, 150mp2an 672 . 2  |-  ( S
-cn-> CC )  =  ( ( ( TopOpen ` fld )t  S )  Cn  ( TopOpen
` fld
) )
152148, 151syl6eleqr 2529 1  |-  ( ph  ->  F  e.  ( S
-cn-> CC ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2710   {crab 2714   _Vcvv 2967    i^i cin 3322    C_ wss 3323   ifcif 3786   U.cuni 4086   class class class wbr 4287    e. cmpt 4345   `'ccnv 4834   dom cdm 4835    |` cres 4837   "cima 4838    o. ccom 4839    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6086   supcsup 7682   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279   +oocpnf 9407   RR*cxr 9409    < clt 9410    <_ cle 9411    - cmin 9587    / cdiv 9985   2c2 10363   NN0cn0 10571   RR+crp 10983   [,)cico 11294   [,]cicc 11295    seqcseq 11798   ^cexp 11857   abscabs 12715    ~~> cli 12954   sum_csu 13155   ↾t crest 14351   TopOpenctopn 14352   *Metcxmt 17781   ballcbl 17783  ℂfldccnfld 17798   Topctop 18478  TopOnctopon 18479   intcnt 18601    Cn ccn 18808    CnP ccnp 18809   -cn->ccncf 20432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-sum 13156  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17789  df-xmet 17790  df-met 17791  df-bl 17792  df-mopn 17793  df-cnfld 17799  df-top 18483  df-bases 18485  df-topon 18486  df-topsp 18487  df-ntr 18604  df-cn 18811  df-cnp 18812  df-tx 19115  df-hmeo 19308  df-xms 19875  df-ms 19876  df-tms 19877  df-cncf 20434  df-ulm 21822
This theorem is referenced by:  pserdvlem2  21873  pserdv  21874  abelth  21886  logtayl  22085
  Copyright terms: Public domain W3C validator