MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercn Structured version   Unicode version

Theorem psercn 22007
Description: An infinite series converges to a continuous function on the open disk of radius  R, where  R is the radius of convergence of the series. (Contributed by Mario Carneiro, 4-Mar-2015.)
Hypotheses
Ref Expression
pserf.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
pserf.f  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
pserf.a  |-  ( ph  ->  A : NN0 --> CC )
pserf.r  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
psercn.s  |-  S  =  ( `' abs " (
0 [,) R ) )
psercn.m  |-  M  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )
Assertion
Ref Expression
psercn  |-  ( ph  ->  F  e.  ( S
-cn-> CC ) )
Distinct variable groups:    j, a, n, r, x, y, A   
j, M, y    j, G, r, y    S, a, j, y    F, a    ph, a, j, y
Allowed substitution hints:    ph( x, n, r)    R( x, y, j, n, r, a)    S( x, n, r)    F( x, y, j, n, r)    G( x, n, a)    M( x, n, r, a)

Proof of Theorem psercn
Dummy variables  k 
s  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumex 13267 . . . . . 6  |-  sum_ j  e.  NN0  ( ( G `
 y ) `  j )  e.  _V
21rgenw 2891 . . . . 5  |-  A. y  e.  S  sum_ j  e. 
NN0  ( ( G `
 y ) `  j )  e.  _V
3 pserf.f . . . . . 6  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
43fnmpt 5635 . . . . 5  |-  ( A. y  e.  S  sum_ j  e.  NN0  ( ( G `  y ) `
 j )  e. 
_V  ->  F  Fn  S
)
52, 4mp1i 12 . . . 4  |-  ( ph  ->  F  Fn  S )
6 psercn.s . . . . . . . . . . 11  |-  S  =  ( `' abs " (
0 [,) R ) )
7 cnvimass 5287 . . . . . . . . . . . 12  |-  ( `' abs " ( 0 [,) R ) ) 
C_  dom  abs
8 absf 12927 . . . . . . . . . . . . 13  |-  abs : CC
--> RR
98fdmi 5662 . . . . . . . . . . . 12  |-  dom  abs  =  CC
107, 9sseqtri 3486 . . . . . . . . . . 11  |-  ( `' abs " ( 0 [,) R ) ) 
C_  CC
116, 10eqsstri 3484 . . . . . . . . . 10  |-  S  C_  CC
1211a1i 11 . . . . . . . . 9  |-  ( ph  ->  S  C_  CC )
1312sselda 3454 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  CC )
14 0cn 9479 . . . . . . . . . . 11  |-  0  e.  CC
15 eqid 2451 . . . . . . . . . . . 12  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
1615cnmetdval 20466 . . . . . . . . . . 11  |-  ( ( 0  e.  CC  /\  a  e.  CC )  ->  ( 0 ( abs 
o.  -  ) a
)  =  ( abs `  ( 0  -  a
) ) )
1714, 13, 16sylancr 663 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( abs  o.  -  ) a )  =  ( abs `  (
0  -  a ) ) )
18 abssub 12916 . . . . . . . . . . 11  |-  ( ( 0  e.  CC  /\  a  e.  CC )  ->  ( abs `  (
0  -  a ) )  =  ( abs `  ( a  -  0 ) ) )
1914, 13, 18sylancr 663 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  ( 0  -  a ) )  =  ( abs `  (
a  -  0 ) ) )
2013subid1d 9809 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  S )  ->  (
a  -  0 )  =  a )
2120fveq2d 5793 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  ( a  - 
0 ) )  =  ( abs `  a
) )
2217, 19, 213eqtrd 2496 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( abs  o.  -  ) a )  =  ( abs `  a
) )
23 breq2 4394 . . . . . . . . . . 11  |-  ( ( ( ( abs `  a
)  +  R )  /  2 )  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )  ->  ( ( abs `  a )  < 
( ( ( abs `  a )  +  R
)  /  2 )  <-> 
( abs `  a
)  <  if ( R  e.  RR , 
( ( ( abs `  a )  +  R
)  /  2 ) ,  ( ( abs `  a )  +  1 ) ) ) )
24 breq2 4394 . . . . . . . . . . 11  |-  ( ( ( abs `  a
)  +  1 )  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )  ->  ( ( abs `  a )  < 
( ( abs `  a
)  +  1 )  <-> 
( abs `  a
)  <  if ( R  e.  RR , 
( ( ( abs `  a )  +  R
)  /  2 ) ,  ( ( abs `  a )  +  1 ) ) ) )
25 simpr 461 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  S )
2625, 6syl6eleq 2549 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  ( `' abs " (
0 [,) R ) ) )
27 ffn 5657 . . . . . . . . . . . . . . . . . 18  |-  ( abs
: CC --> RR  ->  abs 
Fn  CC )
28 elpreima 5922 . . . . . . . . . . . . . . . . . 18  |-  ( abs 
Fn  CC  ->  ( a  e.  ( `' abs " ( 0 [,) R
) )  <->  ( a  e.  CC  /\  ( abs `  a )  e.  ( 0 [,) R ) ) ) )
298, 27, 28mp2b 10 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  ( `' abs " ( 0 [,) R
) )  <->  ( a  e.  CC  /\  ( abs `  a )  e.  ( 0 [,) R ) ) )
3026, 29sylib 196 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  a  e.  S )  ->  (
a  e.  CC  /\  ( abs `  a )  e.  ( 0 [,) R ) ) )
3130simprd 463 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  e.  ( 0 [,) R
) )
32 0re 9487 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
33 iccssxr 11479 . . . . . . . . . . . . . . . . 17  |-  ( 0 [,] +oo )  C_  RR*
34 pserf.g . . . . . . . . . . . . . . . . . . 19  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
35 pserf.a . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A : NN0 --> CC )
36 pserf.r . . . . . . . . . . . . . . . . . . 19  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
3734, 35, 36radcnvcl 21998 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  R  e.  ( 0 [,] +oo ) )
3837adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  a  e.  S )  ->  R  e.  ( 0 [,] +oo ) )
3933, 38sseldi 3452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  a  e.  S )  ->  R  e.  RR* )
40 elico2 11460 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  R  e.  RR* )  -> 
( ( abs `  a
)  e.  ( 0 [,) R )  <->  ( ( abs `  a )  e.  RR  /\  0  <_ 
( abs `  a
)  /\  ( abs `  a )  <  R
) ) )
4132, 39, 40sylancr 663 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  e.  S )  ->  (
( abs `  a
)  e.  ( 0 [,) R )  <->  ( ( abs `  a )  e.  RR  /\  0  <_ 
( abs `  a
)  /\  ( abs `  a )  <  R
) ) )
4231, 41mpbid 210 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  a  e.  S )  ->  (
( abs `  a
)  e.  RR  /\  0  <_  ( abs `  a
)  /\  ( abs `  a )  <  R
) )
4342simp3d 1002 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
R )
4443adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  S )  /\  R  e.  RR )  ->  ( abs `  a )  < 
R )
4513abscld 13024 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  e.  RR )
46 avglt1 10663 . . . . . . . . . . . . 13  |-  ( ( ( abs `  a
)  e.  RR  /\  R  e.  RR )  ->  ( ( abs `  a
)  <  R  <->  ( abs `  a )  <  (
( ( abs `  a
)  +  R )  /  2 ) ) )
4745, 46sylan 471 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  S )  /\  R  e.  RR )  ->  (
( abs `  a
)  <  R  <->  ( abs `  a )  <  (
( ( abs `  a
)  +  R )  /  2 ) ) )
4844, 47mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  S )  /\  R  e.  RR )  ->  ( abs `  a )  < 
( ( ( abs `  a )  +  R
)  /  2 ) )
4945ltp1d 10364 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
( ( abs `  a
)  +  1 ) )
5049adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  S )  /\  -.  R  e.  RR )  ->  ( abs `  a
)  <  ( ( abs `  a )  +  1 ) )
5123, 24, 48, 50ifbothda 3922 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) ) )
52 psercn.m . . . . . . . . . 10  |-  M  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )
5351, 52syl6breqr 4430 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
M )
5422, 53eqbrtrd 4410 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( abs  o.  -  ) a )  <  M )
55 cnxmet 20468 . . . . . . . . . 10  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
5655a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
5714a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  0  e.  CC )
5834, 3, 35, 36, 6, 52psercnlem1 22006 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  S )  ->  ( M  e.  RR+  /\  ( abs `  a )  < 
M  /\  M  <  R ) )
5958simp1d 1000 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR+ )
6059rpxrd 11129 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR* )
61 elbl 20079 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  M  e.  RR* )  ->  (
a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  <->  ( a  e.  CC  /\  ( 0 ( abs  o.  -  ) a )  < 
M ) ) )
6256, 57, 60, 61syl3anc 1219 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  <->  ( a  e.  CC  /\  ( 0 ( abs  o.  -  ) a )  < 
M ) ) )
6313, 54, 62mpbir2and 913 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )
64 fvres 5803 . . . . . . 7  |-  ( a  e.  ( 0 (
ball `  ( abs  o. 
-  ) ) M )  ->  ( ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) ) `  a
)  =  ( F `
 a ) )
6563, 64syl 16 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  (
( F  |`  (
0 ( ball `  ( abs  o.  -  ) ) M ) ) `  a )  =  ( F `  a ) )
663reseq1i 5204 . . . . . . . . . 10  |-  ( F  |`  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  =  ( ( y  e.  S  |->  sum_ j  e.  NN0  (
( G `  y
) `  j )
)  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )
6734, 3, 35, 36, 6, 58psercnlem2 22005 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  (
a  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  /\  (
0 ( ball `  ( abs  o.  -  ) ) M )  C_  ( `' abs " ( 0 [,] M ) )  /\  ( `' abs " ( 0 [,] M
) )  C_  S
) )
6867simp2d 1001 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  C_  ( `' abs " ( 0 [,] M ) ) )
6967simp3d 1002 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  S )  ->  ( `' abs " ( 0 [,] M ) ) 
C_  S )
7068, 69sstrd 3464 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  C_  S
)
71 resmpt 5254 . . . . . . . . . . 11  |-  ( ( 0 ( ball `  ( abs  o.  -  ) ) M )  C_  S  ->  ( ( y  e.  S  |->  sum_ j  e.  NN0  ( ( G `  y ) `  j
) )  |`  (
0 ( ball `  ( abs  o.  -  ) ) M ) )  =  ( y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  sum_ j  e.  NN0  ( ( G `
 y ) `  j ) ) )
7270, 71syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  (
( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )  |`  (
0 ( ball `  ( abs  o.  -  ) ) M ) )  =  ( y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  sum_ j  e.  NN0  ( ( G `
 y ) `  j ) ) )
7366, 72syl5eq 2504 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  =  ( y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  sum_ j  e.  NN0  ( ( G `
 y ) `  j ) ) )
74 eqid 2451 . . . . . . . . . 10  |-  ( y  e.  ( 0 (
ball `  ( abs  o. 
-  ) ) M )  |->  sum_ j  e.  NN0  ( ( G `  y ) `  j
) )  =  ( y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  sum_ j  e.  NN0  ( ( G `
 y ) `  j ) )
7535adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  A : NN0 --> CC )
76 fveq2 5789 . . . . . . . . . . . . . . 15  |-  ( k  =  y  ->  ( G `  k )  =  ( G `  y ) )
7776seqeq3d 11915 . . . . . . . . . . . . . 14  |-  ( k  =  y  ->  seq 0 (  +  , 
( G `  k
) )  =  seq 0 (  +  , 
( G `  y
) ) )
7877fveq1d 5791 . . . . . . . . . . . . 13  |-  ( k  =  y  ->  (  seq 0 (  +  , 
( G `  k
) ) `  s
)  =  (  seq 0 (  +  , 
( G `  y
) ) `  s
) )
7978cbvmptv 4481 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 (
ball `  ( abs  o. 
-  ) ) M )  |->  (  seq 0
(  +  ,  ( G `  k ) ) `  s ) )  =  ( y  e.  ( 0 (
ball `  ( abs  o. 
-  ) ) M )  |->  (  seq 0
(  +  ,  ( G `  y ) ) `  s ) )
80 fveq2 5789 . . . . . . . . . . . . 13  |-  ( s  =  i  ->  (  seq 0 (  +  , 
( G `  y
) ) `  s
)  =  (  seq 0 (  +  , 
( G `  y
) ) `  i
) )
8180mpteq2dv 4477 . . . . . . . . . . . 12  |-  ( s  =  i  ->  (
y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  (  seq 0 (  +  , 
( G `  y
) ) `  s
) )  =  ( y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  (  seq 0 (  +  , 
( G `  y
) ) `  i
) ) )
8279, 81syl5eq 2504 . . . . . . . . . . 11  |-  ( s  =  i  ->  (
k  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  (  seq 0 (  +  , 
( G `  k
) ) `  s
) )  =  ( y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  (  seq 0 (  +  , 
( G `  y
) ) `  i
) ) )
8382cbvmptv 4481 . . . . . . . . . 10  |-  ( s  e.  NN0  |->  ( k  e.  ( 0 (
ball `  ( abs  o. 
-  ) ) M )  |->  (  seq 0
(  +  ,  ( G `  k ) ) `  s ) ) )  =  ( i  e.  NN0  |->  ( y  e.  ( 0 (
ball `  ( abs  o. 
-  ) ) M )  |->  (  seq 0
(  +  ,  ( G `  y ) ) `  i ) ) )
8459rpred 11128 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR )
8558simp3d 1002 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  M  <  R )
8634, 74, 75, 36, 83, 84, 85, 68psercn2 22004 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  (
y  e.  ( 0 ( ball `  ( abs  o.  -  ) ) M )  |->  sum_ j  e.  NN0  ( ( G `
 y ) `  j ) )  e.  ( ( 0 (
ball `  ( abs  o. 
-  ) ) M ) -cn-> CC ) )
8773, 86eqeltrd 2539 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  e.  ( ( 0 ( ball `  ( abs  o.  -  ) ) M )
-cn-> CC ) )
88 cncff 20585 . . . . . . . 8  |-  ( ( F  |`  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  e.  ( ( 0 (
ball `  ( abs  o. 
-  ) ) M ) -cn-> CC )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) ) : ( 0 ( ball `  ( abs  o.  -  ) ) M ) --> CC )
8987, 88syl 16 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) ) : ( 0 ( ball `  ( abs  o.  -  ) ) M ) --> CC )
9089, 63ffvelrnd 5943 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  (
( F  |`  (
0 ( ball `  ( abs  o.  -  ) ) M ) ) `  a )  e.  CC )
9165, 90eqeltrrd 2540 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  ( F `  a )  e.  CC )
9291ralrimiva 2822 . . . 4  |-  ( ph  ->  A. a  e.  S  ( F `  a )  e.  CC )
93 ffnfv 5968 . . . 4  |-  ( F : S --> CC  <->  ( F  Fn  S  /\  A. a  e.  S  ( F `  a )  e.  CC ) )
945, 92, 93sylanbrc 664 . . 3  |-  ( ph  ->  F : S --> CC )
9570, 11syl6ss 3466 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  C_  CC )
96 ssid 3473 . . . . . . . . 9  |-  CC  C_  CC
97 eqid 2451 . . . . . . . . . 10  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
98 eqid 2451 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  =  ( (
TopOpen ` fld )t  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )
9997cnfldtop 20479 . . . . . . . . . . . 12  |-  ( TopOpen ` fld )  e.  Top
10097cnfldtopon 20478 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
101100toponunii 18653 . . . . . . . . . . . . 13  |-  CC  =  U. ( TopOpen ` fld )
102101restid 14474 . . . . . . . . . . . 12  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
10399, 102ax-mp 5 . . . . . . . . . . 11  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
104103eqcomi 2464 . . . . . . . . . 10  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
10597, 98, 104cncfcn 20601 . . . . . . . . 9  |-  ( ( ( 0 ( ball `  ( abs  o.  -  ) ) M ) 
C_  CC  /\  CC  C_  CC )  ->  ( ( 0 ( ball `  ( abs  o.  -  ) ) M ) -cn-> CC )  =  ( ( (
TopOpen ` fld )t  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  Cn  ( TopOpen ` fld )
) )
10695, 96, 105sylancl 662 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
( 0 ( ball `  ( abs  o.  -  ) ) M )
-cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  Cn  ( TopOpen
` fld
) ) )
10787, 106eleqtrd 2541 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  e.  ( ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  Cn  ( TopOpen
` fld
) ) )
108101restuni 18882 . . . . . . . . 9  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( 0 ( ball `  ( abs  o.  -  ) ) M ) 
C_  CC )  -> 
( 0 ( ball `  ( abs  o.  -  ) ) M )  =  U. ( (
TopOpen ` fld )t  ( 0 ( ball `  ( abs  o.  -  ) ) M ) ) )
10999, 95, 108sylancr 663 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  =  U. ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) ) )
11063, 109eleqtrd 2541 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  U. ( ( TopOpen ` fld )t  (
0 ( ball `  ( abs  o.  -  ) ) M ) ) )
111 eqid 2451 . . . . . . . 8  |-  U. (
( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  =  U. ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )
112111cncnpi 18998 . . . . . . 7  |-  ( ( ( F  |`  (
0 ( ball `  ( abs  o.  -  ) ) M ) )  e.  ( ( ( TopOpen ` fld )t  (
0 ( ball `  ( abs  o.  -  ) ) M ) )  Cn  ( TopOpen ` fld ) )  /\  a  e.  U. ( ( TopOpen ` fld )t  (
0 ( ball `  ( abs  o.  -  ) ) M ) ) )  ->  ( F  |`  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  e.  ( ( ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  CnP  ( TopOpen
` fld
) ) `  a
) )
113107, 110, 112syl2anc 661 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  e.  ( ( ( ( TopOpen ` fld )t  (
0 ( ball `  ( abs  o.  -  ) ) M ) )  CnP  ( TopOpen ` fld ) ) `  a
) )
11499a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  ( TopOpen
` fld
)  e.  Top )
115 cnex 9464 . . . . . . . . . . 11  |-  CC  e.  _V
116115, 11ssexi 4535 . . . . . . . . . 10  |-  S  e. 
_V
117116a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  S  e.  _V )
118 restabs 18885 . . . . . . . . 9  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( 0 ( ball `  ( abs  o.  -  ) ) M ) 
C_  S  /\  S  e.  _V )  ->  (
( ( TopOpen ` fld )t  S )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  =  ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) ) )
119114, 70, 117, 118syl3anc 1219 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( TopOpen ` fld )t  S )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  =  ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) ) )
120119oveq1d 6205 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( ( TopOpen ` fld )t  S
)t  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  CnP  ( TopOpen ` fld )
)  =  ( ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  CnP  ( TopOpen
` fld
) ) )
121120fveq1d 5791 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  (
( ( ( (
TopOpen ` fld )t  S )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  CnP  ( TopOpen
` fld
) ) `  a
)  =  ( ( ( ( TopOpen ` fld )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  CnP  ( TopOpen
` fld
) ) `  a
) )
122113, 121eleqtrrd 2542 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  ( F  |`  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  e.  ( ( ( ( (
TopOpen ` fld )t  S )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  CnP  ( TopOpen
` fld
) ) `  a
) )
123 resttop 18880 . . . . . . . 8  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  S  e.  _V )  ->  ( ( TopOpen ` fld )t  S )  e.  Top )
12499, 116, 123mp2an 672 . . . . . . 7  |-  ( (
TopOpen ` fld )t  S )  e.  Top
125124a1i 11 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  (
( TopOpen ` fld )t  S )  e.  Top )
126 df-ss 3440 . . . . . . . . . 10  |-  ( ( 0 ( ball `  ( abs  o.  -  ) ) M )  C_  S  <->  ( ( 0 ( ball `  ( abs  o.  -  ) ) M )  i^i  S )  =  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )
12770, 126sylib 196 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  (
( 0 ( ball `  ( abs  o.  -  ) ) M )  i^i  S )  =  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )
12897cnfldtopn 20477 . . . . . . . . . . . 12  |-  ( TopOpen ` fld )  =  ( MetOpen `  ( abs  o.  -  ) )
129128blopn 20191 . . . . . . . . . . 11  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  M  e.  RR* )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  e.  (
TopOpen ` fld ) )
13056, 57, 60, 129syl3anc 1219 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  e.  (
TopOpen ` fld ) )
131 elrestr 14469 . . . . . . . . . 10  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  S  e.  _V  /\  ( 0 ( ball `  ( abs  o.  -  ) ) M )  e.  ( TopOpen ` fld ) )  ->  (
( 0 ( ball `  ( abs  o.  -  ) ) M )  i^i  S )  e.  ( ( TopOpen ` fld )t  S ) )
132114, 117, 130, 131syl3anc 1219 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  (
( 0 ( ball `  ( abs  o.  -  ) ) M )  i^i  S )  e.  ( ( TopOpen ` fld )t  S ) )
133127, 132eqeltrrd 2540 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
0 ( ball `  ( abs  o.  -  ) ) M )  e.  ( ( TopOpen ` fld )t  S ) )
134 isopn3i 18802 . . . . . . . 8  |-  ( ( ( ( TopOpen ` fld )t  S )  e.  Top  /\  ( 0 ( ball `  ( abs  o.  -  ) ) M )  e.  ( ( TopOpen ` fld )t  S
) )  ->  (
( int `  (
( TopOpen ` fld )t  S ) ) `  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  =  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )
135124, 133, 134sylancr 663 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  (
( int `  (
( TopOpen ` fld )t  S ) ) `  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  =  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )
13663, 135eleqtrrd 2542 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  ( ( int `  (
( TopOpen ` fld )t  S ) ) `  ( 0 ( ball `  ( abs  o.  -  ) ) M ) ) )
13794adantr 465 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  F : S --> CC )
138101restuni 18882 . . . . . . . 8  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  S  C_  CC )  ->  S  =  U. (
( TopOpen ` fld )t  S ) )
13999, 11, 138mp2an 672 . . . . . . 7  |-  S  = 
U. ( ( TopOpen ` fld )t  S
)
140139, 101cnprest 19009 . . . . . 6  |-  ( ( ( ( ( TopOpen ` fld )t  S
)  e.  Top  /\  ( 0 ( ball `  ( abs  o.  -  ) ) M ) 
C_  S )  /\  ( a  e.  ( ( int `  (
( TopOpen ` fld )t  S ) ) `  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  /\  F : S
--> CC ) )  -> 
( F  e.  ( ( ( ( TopOpen ` fld )t  S
)  CnP  ( TopOpen ` fld )
) `  a )  <->  ( F  |`  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  e.  ( ( ( ( ( TopOpen ` fld )t  S )t  ( 0 (
ball `  ( abs  o. 
-  ) ) M ) )  CnP  ( TopOpen
` fld
) ) `  a
) ) )
141125, 70, 136, 137, 140syl22anc 1220 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  ( F  e.  ( (
( ( TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  a
)  <->  ( F  |`  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  e.  ( ( ( ( ( TopOpen ` fld )t  S
)t  ( 0 ( ball `  ( abs  o.  -  ) ) M ) )  CnP  ( TopOpen ` fld )
) `  a )
) )
142122, 141mpbird 232 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  F  e.  ( ( ( (
TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  a
) )
143142ralrimiva 2822 . . 3  |-  ( ph  ->  A. a  e.  S  F  e.  ( (
( ( TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  a
) )
144 resttopon 18881 . . . . 5  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  (
( TopOpen ` fld )t  S )  e.  (TopOn `  S ) )
145100, 11, 144mp2an 672 . . . 4  |-  ( (
TopOpen ` fld )t  S )  e.  (TopOn `  S )
146 cncnp 19000 . . . 4  |-  ( ( ( ( TopOpen ` fld )t  S )  e.  (TopOn `  S )  /\  ( TopOpen
` fld
)  e.  (TopOn `  CC ) )  ->  ( F  e.  ( (
( TopOpen ` fld )t  S )  Cn  ( TopOpen
` fld
) )  <->  ( F : S --> CC  /\  A. a  e.  S  F  e.  ( ( ( (
TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  a
) ) ) )
147145, 100, 146mp2an 672 . . 3  |-  ( F  e.  ( ( (
TopOpen ` fld )t  S )  Cn  ( TopOpen
` fld
) )  <->  ( F : S --> CC  /\  A. a  e.  S  F  e.  ( ( ( (
TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  a
) ) )
14894, 143, 147sylanbrc 664 . 2  |-  ( ph  ->  F  e.  ( ( ( TopOpen ` fld )t  S )  Cn  ( TopOpen
` fld
) ) )
149 eqid 2451 . . . 4  |-  ( (
TopOpen ` fld )t  S )  =  ( ( TopOpen ` fld )t  S )
15097, 149, 104cncfcn 20601 . . 3  |-  ( ( S  C_  CC  /\  CC  C_  CC )  ->  ( S -cn-> CC )  =  ( ( ( TopOpen ` fld )t  S )  Cn  ( TopOpen
` fld
) ) )
15111, 96, 150mp2an 672 . 2  |-  ( S
-cn-> CC )  =  ( ( ( TopOpen ` fld )t  S )  Cn  ( TopOpen
` fld
) )
152148, 151syl6eleqr 2550 1  |-  ( ph  ->  F  e.  ( S
-cn-> CC ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2795   {crab 2799   _Vcvv 3068    i^i cin 3425    C_ wss 3426   ifcif 3889   U.cuni 4189   class class class wbr 4390    |-> cmpt 4448   `'ccnv 4937   dom cdm 4938    |` cres 4940   "cima 4941    o. ccom 4942    Fn wfn 5511   -->wf 5512   ` cfv 5516  (class class class)co 6190   supcsup 7791   CCcc 9381   RRcr 9382   0cc0 9383   1c1 9384    + caddc 9386    x. cmul 9388   +oocpnf 9516   RR*cxr 9518    < clt 9519    <_ cle 9520    - cmin 9696    / cdiv 10094   2c2 10472   NN0cn0 10680   RR+crp 11092   [,)cico 11403   [,]cicc 11404    seqcseq 11907   ^cexp 11966   abscabs 12825    ~~> cli 13064   sum_csu 13265   ↾t crest 14461   TopOpenctopn 14462   *Metcxmt 17910   ballcbl 17912  ℂfldccnfld 17927   Topctop 18614  TopOnctopon 18615   intcnt 18737    Cn ccn 18944    CnP ccnp 18945   -cn->ccncf 20568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-inf2 7948  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460  ax-pre-sup 9461  ax-addf 9462  ax-mulf 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-iin 4272  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-se 4778  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-isom 5525  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-of 6420  df-om 6577  df-1st 6677  df-2nd 6678  df-supp 6791  df-recs 6932  df-rdg 6966  df-1o 7020  df-2o 7021  df-oadd 7024  df-er 7201  df-map 7316  df-pm 7317  df-ixp 7364  df-en 7411  df-dom 7412  df-sdom 7413  df-fin 7414  df-fsupp 7722  df-fi 7762  df-sup 7792  df-oi 7825  df-card 8210  df-cda 8438  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-div 10095  df-nn 10424  df-2 10481  df-3 10482  df-4 10483  df-5 10484  df-6 10485  df-7 10486  df-8 10487  df-9 10488  df-10 10489  df-n0 10681  df-z 10748  df-dec 10857  df-uz 10963  df-q 11055  df-rp 11093  df-xneg 11190  df-xadd 11191  df-xmul 11192  df-ico 11407  df-icc 11408  df-fz 11539  df-fzo 11650  df-fl 11743  df-seq 11908  df-exp 11967  df-hash 12205  df-cj 12690  df-re 12691  df-im 12692  df-sqr 12826  df-abs 12827  df-limsup 13051  df-clim 13068  df-rlim 13069  df-sum 13266  df-struct 14278  df-ndx 14279  df-slot 14280  df-base 14281  df-sets 14282  df-ress 14283  df-plusg 14353  df-mulr 14354  df-starv 14355  df-sca 14356  df-vsca 14357  df-ip 14358  df-tset 14359  df-ple 14360  df-ds 14362  df-unif 14363  df-hom 14364  df-cco 14365  df-rest 14463  df-topn 14464  df-0g 14482  df-gsum 14483  df-topgen 14484  df-pt 14485  df-prds 14488  df-xrs 14542  df-qtop 14547  df-imas 14548  df-xps 14550  df-mre 14626  df-mrc 14627  df-acs 14629  df-mnd 15517  df-submnd 15567  df-mulg 15650  df-cntz 15937  df-cmn 16383  df-psmet 17918  df-xmet 17919  df-met 17920  df-bl 17921  df-mopn 17922  df-cnfld 17928  df-top 18619  df-bases 18621  df-topon 18622  df-topsp 18623  df-ntr 18740  df-cn 18947  df-cnp 18948  df-tx 19251  df-hmeo 19444  df-xms 20011  df-ms 20012  df-tms 20013  df-cncf 20570  df-ulm 21958
This theorem is referenced by:  pserdvlem2  22009  pserdv  22010  abelth  22022  logtayl  22221
  Copyright terms: Public domain W3C validator