Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ps-2c Structured version   Visualization version   Unicode version

Theorem ps-2c 33087
Description: Variation of projective geometry axiom ps-2 33037. (Contributed by NM, 3-Jul-2012.)
Hypotheses
Ref Expression
2atm.l  |-  .<_  =  ( le `  K )
2atm.j  |-  .\/  =  ( join `  K )
2atm.m  |-  ./\  =  ( meet `  K )
2atm.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
ps-2c  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( ( P  .\/  R )  ./\  ( S  .\/  T ) )  e.  A )

Proof of Theorem ps-2c
StepHypRef Expression
1 simp11 1037 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  K  e.  HL )
2 simp12 1038 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  P  e.  A )
3 simp21 1040 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  R  e.  A )
4 hllat 32923 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
51, 4syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  K  e.  Lat )
6 eqid 2450 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
7 2atm.a . . . . . 6  |-  A  =  ( Atoms `  K )
86, 7atbase 32849 . . . . 5  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
92, 8syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  P  e.  ( Base `  K ) )
10 simp13 1039 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  Q  e.  A )
116, 7atbase 32849 . . . . 5  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
1210, 11syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  Q  e.  ( Base `  K ) )
136, 7atbase 32849 . . . . 5  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
143, 13syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  R  e.  ( Base `  K ) )
15 simp31l 1130 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  -.  P  .<_  ( Q 
.\/  R ) )
16 2atm.l . . . . 5  |-  .<_  =  ( le `  K )
17 2atm.j . . . . 5  |-  .\/  =  ( join `  K )
186, 16, 17latnlej1r 16309 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) )  /\  -.  P  .<_  ( Q  .\/  R ) )  ->  P  =/=  R )
195, 9, 12, 14, 15, 18syl131anc 1280 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  P  =/=  R )
20 eqid 2450 . . . 4  |-  ( LLines `  K )  =  (
LLines `  K )
2117, 7, 20llni2 33071 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  R  e.  A )  /\  P  =/=  R
)  ->  ( P  .\/  R )  e.  (
LLines `  K ) )
221, 2, 3, 19, 21syl31anc 1270 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( P  .\/  R
)  e.  ( LLines `  K ) )
23 simp22 1041 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  S  e.  A )
24 simp23 1042 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  T  e.  A )
25 simp31r 1131 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  S  =/=  T )
2617, 7, 20llni2 33071 . . 3  |-  ( ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  /\  S  =/=  T
)  ->  ( S  .\/  T )  e.  (
LLines `  K ) )
271, 23, 24, 25, 26syl31anc 1270 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( S  .\/  T
)  e.  ( LLines `  K ) )
28 simp32 1044 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( P  .\/  R
)  =/=  ( S 
.\/  T ) )
29 simp33 1045 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) )
30 2atm.m . . . 4  |-  ./\  =  ( meet `  K )
31 eqid 2450 . . . 4  |-  ( 0.
`  K )  =  ( 0. `  K
)
3216, 17, 30, 31, 7ps-2b 33041 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( ( P  .\/  R )  ./\  ( S  .\/  T ) )  =/=  ( 0. `  K
) )
331, 2, 10, 3, 23, 24, 15, 25, 29, 32syl333anc 1299 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( ( P  .\/  R )  ./\  ( S  .\/  T ) )  =/=  ( 0. `  K
) )
3430, 31, 7, 202llnmat 33083 . 2  |-  ( ( ( K  e.  HL  /\  ( P  .\/  R
)  e.  ( LLines `  K )  /\  ( S  .\/  T )  e.  ( LLines `  K )
)  /\  ( ( P  .\/  R )  =/=  ( S  .\/  T
)  /\  ( ( P  .\/  R )  ./\  ( S  .\/  T ) )  =/=  ( 0.
`  K ) ) )  ->  ( ( P  .\/  R )  ./\  ( S  .\/  T ) )  e.  A )
351, 22, 27, 28, 33, 34syl32anc 1275 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( ( P  .\/  R )  ./\  ( S  .\/  T ) )  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886    =/= wne 2621   class class class wbr 4401   ` cfv 5581  (class class class)co 6288   Basecbs 15114   lecple 15190   joincjn 16182   meetcmee 16183   0.cp0 16276   Latclat 16284   Atomscatm 32823   HLchlt 32910   LLinesclln 33050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-id 4748  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-preset 16166  df-poset 16184  df-plt 16197  df-lub 16213  df-glb 16214  df-join 16215  df-meet 16216  df-p0 16278  df-lat 16285  df-clat 16347  df-oposet 32736  df-ol 32738  df-oml 32739  df-covers 32826  df-ats 32827  df-atl 32858  df-cvlat 32882  df-hlat 32911  df-llines 33057
This theorem is referenced by:  cdlemg18c  34241  dia2dimlem1  34626
  Copyright terms: Public domain W3C validator