Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ps-2c Structured version   Unicode version

Theorem ps-2c 33491
Description: Variation of projective geometry axiom ps-2 33441. (Contributed by NM, 3-Jul-2012.)
Hypotheses
Ref Expression
2atm.l  |-  .<_  =  ( le `  K )
2atm.j  |-  .\/  =  ( join `  K )
2atm.m  |-  ./\  =  ( meet `  K )
2atm.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
ps-2c  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( ( P  .\/  R )  ./\  ( S  .\/  T ) )  e.  A )

Proof of Theorem ps-2c
StepHypRef Expression
1 simp11 1018 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  K  e.  HL )
2 simp12 1019 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  P  e.  A )
3 simp21 1021 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  R  e.  A )
4 hllat 33327 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
51, 4syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  K  e.  Lat )
6 eqid 2452 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
7 2atm.a . . . . . 6  |-  A  =  ( Atoms `  K )
86, 7atbase 33253 . . . . 5  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
92, 8syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  P  e.  ( Base `  K ) )
10 simp13 1020 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  Q  e.  A )
116, 7atbase 33253 . . . . 5  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
1210, 11syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  Q  e.  ( Base `  K ) )
136, 7atbase 33253 . . . . 5  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
143, 13syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  R  e.  ( Base `  K ) )
15 simp31l 1111 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  -.  P  .<_  ( Q 
.\/  R ) )
16 2atm.l . . . . 5  |-  .<_  =  ( le `  K )
17 2atm.j . . . . 5  |-  .\/  =  ( join `  K )
186, 16, 17latnlej1r 15354 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) )  /\  -.  P  .<_  ( Q  .\/  R ) )  ->  P  =/=  R )
195, 9, 12, 14, 15, 18syl131anc 1232 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  P  =/=  R )
20 eqid 2452 . . . 4  |-  ( LLines `  K )  =  (
LLines `  K )
2117, 7, 20llni2 33475 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  R  e.  A )  /\  P  =/=  R
)  ->  ( P  .\/  R )  e.  (
LLines `  K ) )
221, 2, 3, 19, 21syl31anc 1222 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( P  .\/  R
)  e.  ( LLines `  K ) )
23 simp22 1022 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  S  e.  A )
24 simp23 1023 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  T  e.  A )
25 simp31r 1112 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  S  =/=  T )
2617, 7, 20llni2 33475 . . 3  |-  ( ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  /\  S  =/=  T
)  ->  ( S  .\/  T )  e.  (
LLines `  K ) )
271, 23, 24, 25, 26syl31anc 1222 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( S  .\/  T
)  e.  ( LLines `  K ) )
28 simp32 1025 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( P  .\/  R
)  =/=  ( S 
.\/  T ) )
29 simp33 1026 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) )
30 2atm.m . . . 4  |-  ./\  =  ( meet `  K )
31 eqid 2452 . . . 4  |-  ( 0.
`  K )  =  ( 0. `  K
)
3216, 17, 30, 31, 7ps-2b 33445 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( ( P  .\/  R )  ./\  ( S  .\/  T ) )  =/=  ( 0. `  K
) )
331, 2, 10, 3, 23, 24, 15, 25, 29, 32syl333anc 1251 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( ( P  .\/  R )  ./\  ( S  .\/  T ) )  =/=  ( 0. `  K
) )
3430, 31, 7, 202llnmat 33487 . 2  |-  ( ( ( K  e.  HL  /\  ( P  .\/  R
)  e.  ( LLines `  K )  /\  ( S  .\/  T )  e.  ( LLines `  K )
)  /\  ( ( P  .\/  R )  =/=  ( S  .\/  T
)  /\  ( ( P  .\/  R )  ./\  ( S  .\/  T ) )  =/=  ( 0.
`  K ) ) )  ->  ( ( P  .\/  R )  ./\  ( S  .\/  T ) )  e.  A )
351, 22, 27, 28, 33, 34syl32anc 1227 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( ( -.  P  .<_  ( Q 
.\/  R )  /\  S  =/=  T )  /\  ( P  .\/  R )  =/=  ( S  .\/  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( ( P  .\/  R )  ./\  ( S  .\/  T ) )  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2645   class class class wbr 4395   ` cfv 5521  (class class class)co 6195   Basecbs 14287   lecple 14359   joincjn 15228   meetcmee 15229   0.cp0 15321   Latclat 15329   Atomscatm 33227   HLchlt 33314   LLinesclln 33454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-reu 2803  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4739  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-poset 15230  df-plt 15242  df-lub 15258  df-glb 15259  df-join 15260  df-meet 15261  df-p0 15323  df-lat 15330  df-clat 15392  df-oposet 33140  df-ol 33142  df-oml 33143  df-covers 33230  df-ats 33231  df-atl 33262  df-cvlat 33286  df-hlat 33315  df-llines 33461
This theorem is referenced by:  cdlemg18c  34643  dia2dimlem1  35028
  Copyright terms: Public domain W3C validator