Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ps-2b Structured version   Visualization version   Unicode version

Theorem ps-2b 33041
Description: Variation of projective geometry axiom ps-2 33037. (Contributed by NM, 3-Jul-2012.)
Hypotheses
Ref Expression
ps-2b.l  |-  .<_  =  ( le `  K )
ps-2b.j  |-  .\/  =  ( join `  K )
ps-2b.m  |-  ./\  =  ( meet `  K )
ps-2b.z  |-  .0.  =  ( 0. `  K )
ps-2b.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
ps-2b  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( ( P  .\/  R )  ./\  ( S  .\/  T ) )  =/= 
.0.  )

Proof of Theorem ps-2b
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 simp11 1037 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  K  e.  HL )
2 simp12 1038 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  P  e.  A )
3 simp13 1039 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  Q  e.  A )
4 simp21 1040 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  R  e.  A )
52, 3, 43jca 1187 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )
6 simp22 1041 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  S  e.  A )
7 simp23 1042 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  T  e.  A )
86, 7jca 535 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( S  e.  A  /\  T  e.  A
) )
9 simp31 1043 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  -.  P  .<_  ( Q 
.\/  R ) )
10 simp32 1044 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  S  =/=  T )
119, 10jca 535 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T
) )
12 simp33 1045 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) )
13 ps-2b.l . . . 4  |-  .<_  =  ( le `  K )
14 ps-2b.j . . . 4  |-  .\/  =  ( join `  K )
15 ps-2b.a . . . 4  |-  A  =  ( Atoms `  K )
1613, 14, 15ps-2 33037 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  /\  ( ( -.  P  .<_  ( Q  .\/  R
)  /\  S  =/=  T )  /\  ( S 
.<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  E. u  e.  A  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )
171, 5, 8, 11, 12, 16syl32anc 1275 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  ->  E. u  e.  A  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )
18 simp111 1136 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  ->  K  e.  HL )
19 hlatl 32920 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
2018, 19syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  ->  K  e.  AtLat )
21 hllat 32923 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
2218, 21syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  ->  K  e.  Lat )
23 simp112 1137 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  ->  P  e.  A )
24 simp121 1139 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  ->  R  e.  A )
25 eqid 2450 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
2625, 14, 15hlatjcl 32926 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  R  e.  A )  ->  ( P  .\/  R
)  e.  ( Base `  K ) )
2718, 23, 24, 26syl3anc 1267 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  -> 
( P  .\/  R
)  e.  ( Base `  K ) )
28 simp122 1140 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  ->  S  e.  A )
29 simp123 1141 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  ->  T  e.  A )
3025, 14, 15hlatjcl 32926 . . . . . 6  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
3118, 28, 29, 30syl3anc 1267 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  -> 
( S  .\/  T
)  e.  ( Base `  K ) )
32 ps-2b.m . . . . . 6  |-  ./\  =  ( meet `  K )
3325, 32latmcl 16291 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  R )  e.  ( Base `  K
)  /\  ( S  .\/  T )  e.  (
Base `  K )
)  ->  ( ( P  .\/  R )  ./\  ( S  .\/  T ) )  e.  ( Base `  K ) )
3422, 27, 31, 33syl3anc 1267 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  -> 
( ( P  .\/  R )  ./\  ( S  .\/  T ) )  e.  ( Base `  K
) )
35 simp2 1008 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  ->  u  e.  A )
36 simp3 1009 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  -> 
( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )
3725, 15atbase 32849 . . . . . . 7  |-  ( u  e.  A  ->  u  e.  ( Base `  K
) )
3835, 37syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  ->  u  e.  ( Base `  K ) )
3925, 13, 32latlem12 16317 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( u  e.  ( Base `  K )  /\  ( P  .\/  R )  e.  ( Base `  K
)  /\  ( S  .\/  T )  e.  (
Base `  K )
) )  ->  (
( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) )  <->  u  .<_  ( ( P  .\/  R
)  ./\  ( S  .\/  T ) ) ) )
4022, 38, 27, 31, 39syl13anc 1269 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  -> 
( ( u  .<_  ( P  .\/  R )  /\  u  .<_  ( S 
.\/  T ) )  <-> 
u  .<_  ( ( P 
.\/  R )  ./\  ( S  .\/  T ) ) ) )
4136, 40mpbid 214 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  ->  u  .<_  ( ( P 
.\/  R )  ./\  ( S  .\/  T ) ) )
42 ps-2b.z . . . . 5  |-  .0.  =  ( 0. `  K )
4325, 13, 42, 15atlen0 32870 . . . 4  |-  ( ( ( K  e.  AtLat  /\  ( ( P  .\/  R )  ./\  ( S  .\/  T ) )  e.  ( Base `  K
)  /\  u  e.  A )  /\  u  .<_  ( ( P  .\/  R )  ./\  ( S  .\/  T ) ) )  ->  ( ( P 
.\/  R )  ./\  ( S  .\/  T ) )  =/=  .0.  )
4420, 34, 35, 41, 43syl31anc 1270 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A )  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/=  T  /\  ( S  .<_  ( P 
.\/  Q )  /\  T  .<_  ( Q  .\/  R ) ) ) )  /\  u  e.  A  /\  ( u  .<_  ( P 
.\/  R )  /\  u  .<_  ( S  .\/  T ) ) )  -> 
( ( P  .\/  R )  ./\  ( S  .\/  T ) )  =/= 
.0.  )
4544rexlimdv3a 2880 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( E. u  e.  A  ( u  .<_  ( P  .\/  R )  /\  u  .<_  ( S 
.\/  T ) )  ->  ( ( P 
.\/  R )  ./\  ( S  .\/  T ) )  =/=  .0.  )
)
4617, 45mpd 15 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( -.  P  .<_  ( Q  .\/  R )  /\  S  =/= 
T  /\  ( S  .<_  ( P  .\/  Q
)  /\  T  .<_  ( Q  .\/  R ) ) ) )  -> 
( ( P  .\/  R )  ./\  ( S  .\/  T ) )  =/= 
.0.  )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886    =/= wne 2621   E.wrex 2737   class class class wbr 4401   ` cfv 5581  (class class class)co 6288   Basecbs 15114   lecple 15190   joincjn 16182   meetcmee 16183   0.cp0 16276   Latclat 16284   Atomscatm 32823   AtLatcal 32824   HLchlt 32910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-id 4748  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-preset 16166  df-poset 16184  df-plt 16197  df-lub 16213  df-glb 16214  df-join 16215  df-meet 16216  df-p0 16278  df-lat 16285  df-clat 16347  df-oposet 32736  df-ol 32738  df-oml 32739  df-covers 32826  df-ats 32827  df-atl 32858  df-cvlat 32882  df-hlat 32911
This theorem is referenced by:  ps-2c  33087
  Copyright terms: Public domain W3C validator