MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prunioo Structured version   Unicode version

Theorem prunioo 11652
Description: The closure of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
prunioo  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( A [,] B
) )

Proof of Theorem prunioo
StepHypRef Expression
1 simp3 996 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  <_  B )
2 xrleloe 11353 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  ( A  <  B  \/  A  =  B ) ) )
323adant3 1014 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  ( A  <_  B  <->  ( A  <  B  \/  A  =  B ) ) )
4 df-pr 4019 . . . . . . . . . . 11  |-  { A ,  B }  =  ( { A }  u.  { B } )
54uneq2i 3641 . . . . . . . . . 10  |-  ( ( A (,) B )  u.  { A ,  B } )  =  ( ( A (,) B
)  u.  ( { A }  u.  { B } ) )
6 unass 3647 . . . . . . . . . 10  |-  ( ( ( A (,) B
)  u.  { A } )  u.  { B } )  =  ( ( A (,) B
)  u.  ( { A }  u.  { B } ) )
75, 6eqtr4i 2486 . . . . . . . . 9  |-  ( ( A (,) B )  u.  { A ,  B } )  =  ( ( ( A (,) B )  u.  { A } )  u.  { B } )
8 uncom 3634 . . . . . . . . . . 11  |-  ( ( A (,) B )  u.  { A }
)  =  ( { A }  u.  ( A (,) B ) )
9 snunioo 11649 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  ( { A }  u.  ( A (,) B ) )  =  ( A [,) B ) )
108, 9syl5eq 2507 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( A (,) B
)  u.  { A } )  =  ( A [,) B ) )
1110uneq1d 3643 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( ( A (,) B )  u.  { A } )  u.  { B } )  =  ( ( A [,) B
)  u.  { B } ) )
127, 11syl5eq 2507 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( ( A [,) B )  u.  { B } ) )
13123expa 1194 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  A  <  B )  ->  ( ( A (,) B )  u. 
{ A ,  B } )  =  ( ( A [,) B
)  u.  { B } ) )
14133adantl3 1152 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  /\  A  <  B )  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( ( A [,) B )  u.  { B } ) )
15 snunico 11650 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  (
( A [,) B
)  u.  { B } )  =  ( A [,] B ) )
1615adantr 463 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  /\  A  <  B )  ->  (
( A [,) B
)  u.  { B } )  =  ( A [,] B ) )
1714, 16eqtrd 2495 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  /\  A  <  B )  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( A [,] B
) )
1817ex 432 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  ( A  <  B  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( A [,] B
) ) )
19 iccid 11577 . . . . . . 7  |-  ( A  e.  RR*  ->  ( A [,] A )  =  { A } )
20193ad2ant1 1015 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  ( A [,] A )  =  { A } )
2120eqcomd 2462 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  { A }  =  ( A [,] A ) )
22 uncom 3634 . . . . . . . 8  |-  ( (/)  u. 
{ A } )  =  ( { A }  u.  (/) )
23 un0 3809 . . . . . . . 8  |-  ( { A }  u.  (/) )  =  { A }
2422, 23eqtri 2483 . . . . . . 7  |-  ( (/)  u. 
{ A } )  =  { A }
25 iooid 11560 . . . . . . . . 9  |-  ( A (,) A )  =  (/)
26 oveq2 6278 . . . . . . . . 9  |-  ( A  =  B  ->  ( A (,) A )  =  ( A (,) B
) )
2725, 26syl5eqr 2509 . . . . . . . 8  |-  ( A  =  B  ->  (/)  =  ( A (,) B ) )
28 dfsn2 4029 . . . . . . . . 9  |-  { A }  =  { A ,  A }
29 preq2 4096 . . . . . . . . 9  |-  ( A  =  B  ->  { A ,  A }  =  { A ,  B }
)
3028, 29syl5eq 2507 . . . . . . . 8  |-  ( A  =  B  ->  { A }  =  { A ,  B } )
3127, 30uneq12d 3645 . . . . . . 7  |-  ( A  =  B  ->  ( (/) 
u.  { A }
)  =  ( ( A (,) B )  u.  { A ,  B } ) )
3224, 31syl5eqr 2509 . . . . . 6  |-  ( A  =  B  ->  { A }  =  ( ( A (,) B )  u. 
{ A ,  B } ) )
33 oveq2 6278 . . . . . 6  |-  ( A  =  B  ->  ( A [,] A )  =  ( A [,] B
) )
3432, 33eqeq12d 2476 . . . . 5  |-  ( A  =  B  ->  ( { A }  =  ( A [,] A )  <-> 
( ( A (,) B )  u.  { A ,  B }
)  =  ( A [,] B ) ) )
3521, 34syl5ibcom 220 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  ( A  =  B  ->  ( ( A (,) B
)  u.  { A ,  B } )  =  ( A [,] B
) ) )
3618, 35jaod 378 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  (
( A  <  B  \/  A  =  B
)  ->  ( ( A (,) B )  u. 
{ A ,  B } )  =  ( A [,] B ) ) )
373, 36sylbid 215 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  ( A  <_  B  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( A [,] B
) ) )
381, 37mpd 15 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( A [,] B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    u. cun 3459   (/)c0 3783   {csn 4016   {cpr 4018   class class class wbr 4439  (class class class)co 6270   RR*cxr 9616    < clt 9617    <_ cle 9618   (,)cioo 11532   [,)cico 11534   [,]cicc 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-n0 10792  df-z 10861  df-uz 11083  df-q 11184  df-ioo 11536  df-ico 11538  df-icc 11539
This theorem is referenced by:  iccntr  21492  ovolioo  22144  uniiccdif  22153  itgioo  22388  rollelem  22556  dvivthlem1  22575  reasinsin  23424  scvxcvx  23513  eliccioo  27861  iccdifioo  31794  iccdifprioo  31795  cncfiooicclem1  31935  fourierdlem102  32230  fourierdlem114  32242
  Copyright terms: Public domain W3C validator