MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prub Unicode version

Theorem prub 8827
Description: A positive fraction not in a positive real is an upper bound. Remark (1) of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
prub  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  e.  Q. )  ->  ( -.  C  e.  A  ->  B  <Q  C ) )

Proof of Theorem prub
StepHypRef Expression
1 eleq1 2464 . . . . . . 7  |-  ( B  =  C  ->  ( B  e.  A  <->  C  e.  A ) )
21biimpcd 216 . . . . . 6  |-  ( B  e.  A  ->  ( B  =  C  ->  C  e.  A ) )
32adantl 453 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( B  =  C  ->  C  e.  A
) )
4 prcdnq 8826 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( C  <Q  B  ->  C  e.  A )
)
53, 4jaod 370 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( ( B  =  C  \/  C  <Q  B )  ->  C  e.  A ) )
65con3d 127 . . 3  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( -.  C  e.  A  ->  -.  ( B  =  C  \/  C  <Q  B ) ) )
76adantr 452 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  e.  Q. )  ->  ( -.  C  e.  A  ->  -.  ( B  =  C  \/  C  <Q  B ) ) )
8 elprnq 8824 . . 3  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  B  e.  Q. )
9 ltsonq 8802 . . . 4  |-  <Q  Or  Q.
10 sotric 4489 . . . 4  |-  ( ( 
<Q  Or  Q.  /\  ( B  e.  Q.  /\  C  e.  Q. ) )  -> 
( B  <Q  C  <->  -.  ( B  =  C  \/  C  <Q  B ) ) )
119, 10mpan 652 . . 3  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  ( B  <Q  C  <->  -.  ( B  =  C  \/  C  <Q  B ) ) )
128, 11sylan 458 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  e.  Q. )  ->  ( B  <Q  C  <->  -.  ( B  =  C  \/  C  <Q  B ) ) )
137, 12sylibrd 226 1  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  e.  Q. )  ->  ( -.  C  e.  A  ->  B  <Q  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721   class class class wbr 4172    Or wor 4462   Q.cnq 8683    <Q cltq 8689   P.cnp 8690
This theorem is referenced by:  genpnnp  8838  psslinpr  8864  ltexprlem6  8874  ltexprlem7  8875  prlem936  8880  reclem4pr  8883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-oadd 6687  df-omul 6688  df-er 6864  df-ni 8705  df-mi 8707  df-lti 8708  df-ltpq 8743  df-enq 8744  df-nq 8745  df-ltnq 8751  df-np 8814
  Copyright terms: Public domain W3C validator