Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem18 Structured version   Unicode version

Theorem prtlem18 29045
Description: Lemma for prter2 29049. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem18.1  |-  .~  =  { <. x ,  y
>.  |  E. u  e.  A  ( x  e.  u  /\  y  e.  u ) }
Assertion
Ref Expression
prtlem18  |-  ( Prt 
A  ->  ( (
v  e.  A  /\  z  e.  v )  ->  ( w  e.  v  <-> 
z  .~  w )
) )
Distinct variable groups:    v, u, w, x, y, z, A   
v,  .~ , w, z
Allowed substitution hints:    .~ ( x, y, u)

Proof of Theorem prtlem18
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 rspe 2796 . . . . 5  |-  ( ( v  e.  A  /\  ( z  e.  v  /\  w  e.  v ) )  ->  E. v  e.  A  ( z  e.  v  /\  w  e.  v ) )
21expr 615 . . . 4  |-  ( ( v  e.  A  /\  z  e.  v )  ->  ( w  e.  v  ->  E. v  e.  A  ( z  e.  v  /\  w  e.  v ) ) )
3 prtlem18.1 . . . . 5  |-  .~  =  { <. x ,  y
>.  |  E. u  e.  A  ( x  e.  u  /\  y  e.  u ) }
43prtlem13 29036 . . . 4  |-  ( z  .~  w  <->  E. v  e.  A  ( z  e.  v  /\  w  e.  v ) )
52, 4syl6ibr 227 . . 3  |-  ( ( v  e.  A  /\  z  e.  v )  ->  ( w  e.  v  ->  z  .~  w
) )
65a1i 11 . 2  |-  ( Prt 
A  ->  ( (
v  e.  A  /\  z  e.  v )  ->  ( w  e.  v  ->  z  .~  w
) ) )
73prtlem13 29036 . . 3  |-  ( z  .~  w  <->  E. p  e.  A  ( z  e.  p  /\  w  e.  p ) )
8 prtlem17 29044 . . 3  |-  ( Prt 
A  ->  ( (
v  e.  A  /\  z  e.  v )  ->  ( E. p  e.  A  ( z  e.  p  /\  w  e.  p )  ->  w  e.  v ) ) )
97, 8syl7bi 230 . 2  |-  ( Prt 
A  ->  ( (
v  e.  A  /\  z  e.  v )  ->  ( z  .~  w  ->  w  e.  v ) ) )
106, 9impbidd 189 1  |-  ( Prt 
A  ->  ( (
v  e.  A  /\  z  e.  v )  ->  ( w  e.  v  <-> 
z  .~  w )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2735   class class class wbr 4311   {copab 4368   Prt wprt 29039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4432  ax-nul 4440  ax-pr 4550
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2739  df-rex 2740  df-rab 2743  df-v 2993  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-nul 3657  df-if 3811  df-sn 3897  df-pr 3899  df-op 3903  df-br 4312  df-opab 4370  df-prt 29040
This theorem is referenced by:  prtlem19  29046
  Copyright terms: Public domain W3C validator