Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem10 Unicode version

Theorem prtlem10 26604
Description: Lemma for prter3 26621. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
prtlem10  |-  (  .~  Er  A  ->  ( z  e.  A  ->  (
z  .~  w  <->  E. v  e.  A  ( z  e.  [ v ]  .~  /\  w  e.  [ v ]  .~  ) ) ) )
Distinct variable groups:    w, v    z, v    v, A    v,  .~
Allowed substitution hints:    A( z, w)    .~ ( z, w)

Proof of Theorem prtlem10
StepHypRef Expression
1 simpr 448 . . . . 5  |-  ( (  .~  Er  A  /\  z  e.  A )  ->  z  e.  A )
2 simpl 444 . . . . . 6  |-  ( (  .~  Er  A  /\  z  e.  A )  ->  .~  Er  A )
32, 1erref 6884 . . . . 5  |-  ( (  .~  Er  A  /\  z  e.  A )  ->  z  .~  z )
4 breq1 4175 . . . . . . . 8  |-  ( v  =  z  ->  (
v  .~  z  <->  z  .~  z ) )
5 breq1 4175 . . . . . . . 8  |-  ( v  =  z  ->  (
v  .~  w  <->  z  .~  w ) )
64, 5anbi12d 692 . . . . . . 7  |-  ( v  =  z  ->  (
( v  .~  z  /\  v  .~  w
)  <->  ( z  .~  z  /\  z  .~  w
) ) )
76rspcev 3012 . . . . . 6  |-  ( ( z  e.  A  /\  ( z  .~  z  /\  z  .~  w
) )  ->  E. v  e.  A  ( v  .~  z  /\  v  .~  w ) )
87expr 599 . . . . 5  |-  ( ( z  e.  A  /\  z  .~  z )  -> 
( z  .~  w  ->  E. v  e.  A  ( v  .~  z  /\  v  .~  w
) ) )
91, 3, 8syl2anc 643 . . . 4  |-  ( (  .~  Er  A  /\  z  e.  A )  ->  ( z  .~  w  ->  E. v  e.  A  ( v  .~  z  /\  v  .~  w
) ) )
10 simplll 735 . . . . . . 7  |-  ( ( ( (  .~  Er  A  /\  z  e.  A
)  /\  v  e.  A )  /\  (
v  .~  z  /\  v  .~  w ) )  ->  .~  Er  A
)
11 simprl 733 . . . . . . 7  |-  ( ( ( (  .~  Er  A  /\  z  e.  A
)  /\  v  e.  A )  /\  (
v  .~  z  /\  v  .~  w ) )  ->  v  .~  z
)
12 simprr 734 . . . . . . 7  |-  ( ( ( (  .~  Er  A  /\  z  e.  A
)  /\  v  e.  A )  /\  (
v  .~  z  /\  v  .~  w ) )  ->  v  .~  w
)
1310, 11, 12ertr3d 6882 . . . . . 6  |-  ( ( ( (  .~  Er  A  /\  z  e.  A
)  /\  v  e.  A )  /\  (
v  .~  z  /\  v  .~  w ) )  ->  z  .~  w
)
1413ex 424 . . . . 5  |-  ( ( (  .~  Er  A  /\  z  e.  A
)  /\  v  e.  A )  ->  (
( v  .~  z  /\  v  .~  w
)  ->  z  .~  w ) )
1514rexlimdva 2790 . . . 4  |-  ( (  .~  Er  A  /\  z  e.  A )  ->  ( E. v  e.  A  ( v  .~  z  /\  v  .~  w
)  ->  z  .~  w ) )
169, 15impbid 184 . . 3  |-  ( (  .~  Er  A  /\  z  e.  A )  ->  ( z  .~  w  <->  E. v  e.  A  ( v  .~  z  /\  v  .~  w ) ) )
17 vex 2919 . . . . . 6  |-  z  e. 
_V
18 vex 2919 . . . . . 6  |-  v  e. 
_V
1917, 18elec 6903 . . . . 5  |-  ( z  e.  [ v ]  .~  <->  v  .~  z
)
20 vex 2919 . . . . . 6  |-  w  e. 
_V
2120, 18elec 6903 . . . . 5  |-  ( w  e.  [ v ]  .~  <->  v  .~  w
)
2219, 21anbi12i 679 . . . 4  |-  ( ( z  e.  [ v ]  .~  /\  w  e.  [ v ]  .~  ) 
<->  ( v  .~  z  /\  v  .~  w
) )
2322rexbii 2691 . . 3  |-  ( E. v  e.  A  ( z  e.  [ v ]  .~  /\  w  e.  [ v ]  .~  ) 
<->  E. v  e.  A  ( v  .~  z  /\  v  .~  w
) )
2416, 23syl6bbr 255 . 2  |-  ( (  .~  Er  A  /\  z  e.  A )  ->  ( z  .~  w  <->  E. v  e.  A  ( z  e.  [ v ]  .~  /\  w  e.  [ v ]  .~  ) ) )
2524ex 424 1  |-  (  .~  Er  A  ->  ( z  e.  A  ->  (
z  .~  w  <->  E. v  e.  A  ( z  e.  [ v ]  .~  /\  w  e.  [ v ]  .~  ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1721   E.wrex 2667   class class class wbr 4172    Er wer 6861   [cec 6862
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-br 4173  df-opab 4227  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-er 6864  df-ec 6866
  Copyright terms: Public domain W3C validator