Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem1 Structured version   Unicode version

Theorem prtlem1 32383
Description: Add a disjunct in the antecedent. (Contributed by Rodolfo Medina, 24-Sep-2010.)
Hypothesis
Ref Expression
prtlem1.1  |-  ( ps 
->  ( ch  ->  ph )
)
Assertion
Ref Expression
prtlem1  |-  ( (
ph  \/  ps )  ->  ( ch  ->  ph )
)

Proof of Theorem prtlem1
StepHypRef Expression
1 ax-1 6 . 2  |-  ( ph  ->  ( ch  ->  ph )
)
2 prtlem1.1 . 2  |-  ( ps 
->  ( ch  ->  ph )
)
31, 2jaoi 380 1  |-  ( (
ph  \/  ps )  ->  ( ch  ->  ph )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-or 371
This theorem is referenced by:  prtlem14  32414
  Copyright terms: Public domain W3C validator