Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prter1 Structured version   Unicode version

Theorem prter1 29036
Description: Every partition generates an equivalence relation. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem18.1  |-  .~  =  { <. x ,  y
>.  |  E. u  e.  A  ( x  e.  u  /\  y  e.  u ) }
Assertion
Ref Expression
prter1  |-  ( Prt 
A  ->  .~  Er  U. A )
Distinct variable group:    x, u, y, A
Allowed substitution hints:    .~ ( x, y, u)

Proof of Theorem prter1
Dummy variables  q  p  r  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prtlem18.1 . . . 4  |-  .~  =  { <. x ,  y
>.  |  E. u  e.  A  ( x  e.  u  /\  y  e.  u ) }
21relopabi 4977 . . 3  |-  Rel  .~
32a1i 11 . 2  |-  ( Prt 
A  ->  Rel  .~  )
41prtlem16 29026 . . 3  |-  dom  .~  =  U. A
54a1i 11 . 2  |-  ( Prt 
A  ->  dom  .~  =  U. A )
6 prtlem15 29032 . . . . . 6  |-  ( Prt 
A  ->  ( E. v  e.  A  E. q  e.  A  (
( z  e.  v  /\  w  e.  v )  /\  ( w  e.  q  /\  p  e.  q ) )  ->  E. r  e.  A  ( z  e.  r  /\  p  e.  r ) ) )
71prtlem13 29025 . . . . . . . 8  |-  ( z  .~  w  <->  E. v  e.  A  ( z  e.  v  /\  w  e.  v ) )
81prtlem13 29025 . . . . . . . 8  |-  ( w  .~  p  <->  E. q  e.  A  ( w  e.  q  /\  p  e.  q ) )
97, 8anbi12i 697 . . . . . . 7  |-  ( ( z  .~  w  /\  w  .~  p )  <->  ( E. v  e.  A  (
z  e.  v  /\  w  e.  v )  /\  E. q  e.  A  ( w  e.  q  /\  p  e.  q
) ) )
10 reeanv 2900 . . . . . . 7  |-  ( E. v  e.  A  E. q  e.  A  (
( z  e.  v  /\  w  e.  v )  /\  ( w  e.  q  /\  p  e.  q ) )  <->  ( E. v  e.  A  (
z  e.  v  /\  w  e.  v )  /\  E. q  e.  A  ( w  e.  q  /\  p  e.  q
) ) )
119, 10bitr4i 252 . . . . . 6  |-  ( ( z  .~  w  /\  w  .~  p )  <->  E. v  e.  A  E. q  e.  A  ( (
z  e.  v  /\  w  e.  v )  /\  ( w  e.  q  /\  p  e.  q ) ) )
121prtlem13 29025 . . . . . 6  |-  ( z  .~  p  <->  E. r  e.  A  ( z  e.  r  /\  p  e.  r ) )
136, 11, 123imtr4g 270 . . . . 5  |-  ( Prt 
A  ->  ( (
z  .~  w  /\  w  .~  p )  -> 
z  .~  p )
)
14 pm3.22 449 . . . . . . 7  |-  ( ( z  e.  v  /\  w  e.  v )  ->  ( w  e.  v  /\  z  e.  v ) )
1514reximi 2835 . . . . . 6  |-  ( E. v  e.  A  ( z  e.  v  /\  w  e.  v )  ->  E. v  e.  A  ( w  e.  v  /\  z  e.  v
) )
161prtlem13 29025 . . . . . 6  |-  ( w  .~  z  <->  E. v  e.  A  ( w  e.  v  /\  z  e.  v ) )
1715, 7, 163imtr4i 266 . . . . 5  |-  ( z  .~  w  ->  w  .~  z )
1813, 17jctil 537 . . . 4  |-  ( Prt 
A  ->  ( (
z  .~  w  ->  w  .~  z )  /\  ( ( z  .~  w  /\  w  .~  p
)  ->  z  .~  p ) ) )
1918alrimivv 1686 . . 3  |-  ( Prt 
A  ->  A. w A. p ( ( z  .~  w  ->  w  .~  z )  /\  (
( z  .~  w  /\  w  .~  p
)  ->  z  .~  p ) ) )
2019alrimiv 1685 . 2  |-  ( Prt 
A  ->  A. z A. w A. p ( ( z  .~  w  ->  w  .~  z )  /\  ( ( z  .~  w  /\  w  .~  p )  ->  z  .~  p ) ) )
21 dfer2 7114 . 2  |-  (  .~  Er  U. A  <->  ( Rel  .~ 
/\  dom  .~  =  U. A  /\  A. z A. w A. p ( ( z  .~  w  ->  w  .~  z )  /\  ( ( z  .~  w  /\  w  .~  p )  ->  z  .~  p ) ) ) )
223, 5, 20, 21syl3anbrc 1172 1  |-  ( Prt 
A  ->  .~  Er  U. A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1367    = wceq 1369   E.wrex 2728   U.cuni 4103   class class class wbr 4304   {copab 4361   dom cdm 4852   Rel wrel 4857    Er wer 7110   Prt wprt 29028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pr 4543
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-rab 2736  df-v 2986  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-br 4305  df-opab 4363  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-er 7113  df-prt 29029
This theorem is referenced by:  prtex  29037
  Copyright terms: Public domain W3C validator