Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prter1 Structured version   Unicode version

Theorem prter1 32420
Description: Every partition generates an equivalence relation. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem18.1  |-  .~  =  { <. x ,  y
>.  |  E. u  e.  A  ( x  e.  u  /\  y  e.  u ) }
Assertion
Ref Expression
prter1  |-  ( Prt 
A  ->  .~  Er  U. A )
Distinct variable group:    x, u, y, A
Allowed substitution hints:    .~ ( x, y, u)

Proof of Theorem prter1
Dummy variables  q  p  r  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prtlem18.1 . . . 4  |-  .~  =  { <. x ,  y
>.  |  E. u  e.  A  ( x  e.  u  /\  y  e.  u ) }
21relopabi 4978 . . 3  |-  Rel  .~
32a1i 11 . 2  |-  ( Prt 
A  ->  Rel  .~  )
41prtlem16 32410 . . 3  |-  dom  .~  =  U. A
54a1i 11 . 2  |-  ( Prt 
A  ->  dom  .~  =  U. A )
6 prtlem15 32416 . . . . . 6  |-  ( Prt 
A  ->  ( E. v  e.  A  E. q  e.  A  (
( z  e.  v  /\  w  e.  v )  /\  ( w  e.  q  /\  p  e.  q ) )  ->  E. r  e.  A  ( z  e.  r  /\  p  e.  r ) ) )
71prtlem13 32409 . . . . . . . 8  |-  ( z  .~  w  <->  E. v  e.  A  ( z  e.  v  /\  w  e.  v ) )
81prtlem13 32409 . . . . . . . 8  |-  ( w  .~  p  <->  E. q  e.  A  ( w  e.  q  /\  p  e.  q ) )
97, 8anbi12i 701 . . . . . . 7  |-  ( ( z  .~  w  /\  w  .~  p )  <->  ( E. v  e.  A  (
z  e.  v  /\  w  e.  v )  /\  E. q  e.  A  ( w  e.  q  /\  p  e.  q
) ) )
10 reeanv 2993 . . . . . . 7  |-  ( E. v  e.  A  E. q  e.  A  (
( z  e.  v  /\  w  e.  v )  /\  ( w  e.  q  /\  p  e.  q ) )  <->  ( E. v  e.  A  (
z  e.  v  /\  w  e.  v )  /\  E. q  e.  A  ( w  e.  q  /\  p  e.  q
) ) )
119, 10bitr4i 255 . . . . . 6  |-  ( ( z  .~  w  /\  w  .~  p )  <->  E. v  e.  A  E. q  e.  A  ( (
z  e.  v  /\  w  e.  v )  /\  ( w  e.  q  /\  p  e.  q ) ) )
121prtlem13 32409 . . . . . 6  |-  ( z  .~  p  <->  E. r  e.  A  ( z  e.  r  /\  p  e.  r ) )
136, 11, 123imtr4g 273 . . . . 5  |-  ( Prt 
A  ->  ( (
z  .~  w  /\  w  .~  p )  -> 
z  .~  p )
)
14 pm3.22 450 . . . . . . 7  |-  ( ( z  e.  v  /\  w  e.  v )  ->  ( w  e.  v  /\  z  e.  v ) )
1514reximi 2890 . . . . . 6  |-  ( E. v  e.  A  ( z  e.  v  /\  w  e.  v )  ->  E. v  e.  A  ( w  e.  v  /\  z  e.  v
) )
161prtlem13 32409 . . . . . 6  |-  ( w  .~  z  <->  E. v  e.  A  ( w  e.  v  /\  z  e.  v ) )
1715, 7, 163imtr4i 269 . . . . 5  |-  ( z  .~  w  ->  w  .~  z )
1813, 17jctil 539 . . . 4  |-  ( Prt 
A  ->  ( (
z  .~  w  ->  w  .~  z )  /\  ( ( z  .~  w  /\  w  .~  p
)  ->  z  .~  p ) ) )
1918alrimivv 1768 . . 3  |-  ( Prt 
A  ->  A. w A. p ( ( z  .~  w  ->  w  .~  z )  /\  (
( z  .~  w  /\  w  .~  p
)  ->  z  .~  p ) ) )
2019alrimiv 1767 . 2  |-  ( Prt 
A  ->  A. z A. w A. p ( ( z  .~  w  ->  w  .~  z )  /\  ( ( z  .~  w  /\  w  .~  p )  ->  z  .~  p ) ) )
21 dfer2 7376 . 2  |-  (  .~  Er  U. A  <->  ( Rel  .~ 
/\  dom  .~  =  U. A  /\  A. z A. w A. p ( ( z  .~  w  ->  w  .~  z )  /\  ( ( z  .~  w  /\  w  .~  p )  ->  z  .~  p ) ) ) )
223, 5, 20, 21syl3anbrc 1189 1  |-  ( Prt 
A  ->  .~  Er  U. A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370   A.wal 1435    = wceq 1437   E.wrex 2772   U.cuni 4219   class class class wbr 4423   {copab 4481   dom cdm 4853   Rel wrel 4858    Er wer 7372   Prt wprt 32412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pr 4660
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-rab 2780  df-v 3082  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-br 4424  df-opab 4483  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-er 7375  df-prt 32413
This theorem is referenced by:  prtex  32421
  Copyright terms: Public domain W3C validator