MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prstr Structured version   Unicode version

Theorem prstr 15205
Description: Less-or-equal is transitive in a preset. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
isprs.b  |-  B  =  ( Base `  K
)
isprs.l  |-  .<_  =  ( le `  K )
Assertion
Ref Expression
prstr  |-  ( ( K  e.  Preset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  ( X  .<_  Y  /\  Y  .<_  Z ) )  ->  X  .<_  Z )

Proof of Theorem prstr
StepHypRef Expression
1 isprs.b . . . 4  |-  B  =  ( Base `  K
)
2 isprs.l . . . 4  |-  .<_  =  ( le `  K )
31, 2prslem 15203 . . 3  |-  ( ( K  e.  Preset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .<_  X  /\  ( ( X  .<_  Y  /\  Y  .<_  Z )  ->  X  .<_  Z ) ) )
43simprd 463 . 2  |-  ( ( K  e.  Preset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<_  Y  /\  Y  .<_  Z )  ->  X  .<_  Z ) )
543impia 1185 1  |-  ( ( K  e.  Preset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  ( X  .<_  Y  /\  Y  .<_  Z ) )  ->  X  .<_  Z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   class class class wbr 4390   ` cfv 5516   Basecbs 14276   lecple 14347    Preset cpreset 15198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-nul 4519
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3070  df-sbc 3285  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-br 4391  df-iota 5479  df-fv 5524  df-preset 15200
This theorem is referenced by:  drsdirfi  15210
  Copyright terms: Public domain W3C validator