Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsss Structured version   Unicode version

Theorem prsss 26490
Description: Relation of a subpreset. (Contributed by Thierry Arnoux, 13-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b  |-  B  =  ( Base `  K
)
ordtNEW.l  |-  .<_  =  ( ( le `  K
)  i^i  ( B  X.  B ) )
Assertion
Ref Expression
prsss  |-  ( ( K  e.  Preset  /\  A  C_  B )  ->  (  .<_  i^i  ( A  X.  A ) )  =  ( ( le `  K )  i^i  ( A  X.  A ) ) )

Proof of Theorem prsss
StepHypRef Expression
1 ordtNEW.l . . . . 5  |-  .<_  =  ( ( le `  K
)  i^i  ( B  X.  B ) )
21ineq1i 3655 . . . 4  |-  (  .<_  i^i  ( A  X.  A
) )  =  ( ( ( le `  K )  i^i  ( B  X.  B ) )  i^i  ( A  X.  A ) )
3 inass 3667 . . . 4  |-  ( ( ( le `  K
)  i^i  ( B  X.  B ) )  i^i  ( A  X.  A
) )  =  ( ( le `  K
)  i^i  ( ( B  X.  B )  i^i  ( A  X.  A
) ) )
42, 3eqtri 2483 . . 3  |-  (  .<_  i^i  ( A  X.  A
) )  =  ( ( le `  K
)  i^i  ( ( B  X.  B )  i^i  ( A  X.  A
) ) )
5 xpss12 5052 . . . . . 6  |-  ( ( A  C_  B  /\  A  C_  B )  -> 
( A  X.  A
)  C_  ( B  X.  B ) )
65anidms 645 . . . . 5  |-  ( A 
C_  B  ->  ( A  X.  A )  C_  ( B  X.  B
) )
7 dfss1 3662 . . . . 5  |-  ( ( A  X.  A ) 
C_  ( B  X.  B )  <->  ( ( B  X.  B )  i^i  ( A  X.  A
) )  =  ( A  X.  A ) )
86, 7sylib 196 . . . 4  |-  ( A 
C_  B  ->  (
( B  X.  B
)  i^i  ( A  X.  A ) )  =  ( A  X.  A
) )
98ineq2d 3659 . . 3  |-  ( A 
C_  B  ->  (
( le `  K
)  i^i  ( ( B  X.  B )  i^i  ( A  X.  A
) ) )  =  ( ( le `  K )  i^i  ( A  X.  A ) ) )
104, 9syl5eq 2507 . 2  |-  ( A 
C_  B  ->  (  .<_  i^i  ( A  X.  A ) )  =  ( ( le `  K )  i^i  ( A  X.  A ) ) )
1110adantl 466 1  |-  ( ( K  e.  Preset  /\  A  C_  B )  ->  (  .<_  i^i  ( A  X.  A ) )  =  ( ( le `  K )  i^i  ( A  X.  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    i^i cin 3434    C_ wss 3435    X. cxp 4945   ` cfv 5525   Basecbs 14291   lecple 14363    Preset cpreset 15214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-v 3078  df-in 3442  df-ss 3449  df-opab 4458  df-xp 4953
This theorem is referenced by:  prsssdm  26491  ordtrest2NEW  26497
  Copyright terms: Public domain W3C validator