MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  proplem Structured version   Unicode version

Theorem proplem 14936
Description: Lemma for mndpropd 15754. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
proplem.1  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x F y )  =  ( x G y ) )
Assertion
Ref Expression
proplem  |-  ( (
ph  /\  ( X  e.  A  /\  Y  e.  B ) )  -> 
( X F Y )  =  ( X G Y ) )
Distinct variable groups:    x, y, A    x, B, y    x, F, y    ph, x, y   
y, Y    x, G, y    x, X, y
Allowed substitution hint:    Y( x)

Proof of Theorem proplem
StepHypRef Expression
1 proplem.1 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x F y )  =  ( x G y ) )
21ralrimivva 2880 . 2  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) )
3 oveq1 6284 . . . 4  |-  ( x  =  X  ->  (
x F y )  =  ( X F y ) )
4 oveq1 6284 . . . 4  |-  ( x  =  X  ->  (
x G y )  =  ( X G y ) )
53, 4eqeq12d 2484 . . 3  |-  ( x  =  X  ->  (
( x F y )  =  ( x G y )  <->  ( X F y )  =  ( X G y ) ) )
6 oveq2 6285 . . . 4  |-  ( y  =  Y  ->  ( X F y )  =  ( X F Y ) )
7 oveq2 6285 . . . 4  |-  ( y  =  Y  ->  ( X G y )  =  ( X G Y ) )
86, 7eqeq12d 2484 . . 3  |-  ( y  =  Y  ->  (
( X F y )  =  ( X G y )  <->  ( X F Y )  =  ( X G Y ) ) )
95, 8rspc2v 3218 . 2  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y )  ->  ( X F Y )  =  ( X G Y ) ) )
102, 9mpan9 469 1  |-  ( (
ph  /\  ( X  e.  A  /\  Y  e.  B ) )  -> 
( X F Y )  =  ( X G Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2809  (class class class)co 6277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ral 2814  df-rex 2815  df-rab 2818  df-v 3110  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-br 4443  df-iota 5544  df-fv 5589  df-ov 6280
This theorem is referenced by:  mndpropd  15754  grpidpropd  15755  gsumpropd2lem  15813  grpsubpropd2  15937  cmnpropd  16598  rngpropd  17012  lmodprop2d  17350  lsspropd  17441  lmhmpropd  17497  lbspropd  17523  assapropd  17742  asclpropd  17761  psrplusgpropd  18043  phlpropd  18452
  Copyright terms: Public domain W3C validator