Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proot1ex Structured version   Unicode version

Theorem proot1ex 30782
Description: The complex field has primitive  N-th roots of unity for all  N. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
proot1ex.g  |-  G  =  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) )
proot1ex.o  |-  O  =  ( od `  G
)
Assertion
Ref Expression
proot1ex  |-  ( N  e.  NN  ->  ( -u 1  ^c  ( 2  /  N ) )  e.  ( `' O " { N } ) )

Proof of Theorem proot1ex
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 neg1cn 10638 . . . 4  |-  -u 1  e.  CC
2 2rp 11224 . . . . . 6  |-  2  e.  RR+
3 nnrp 11228 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  RR+ )
4 rpdivcl 11241 . . . . . 6  |-  ( ( 2  e.  RR+  /\  N  e.  RR+ )  ->  (
2  /  N )  e.  RR+ )
52, 3, 4sylancr 663 . . . . 5  |-  ( N  e.  NN  ->  (
2  /  N )  e.  RR+ )
65rpcnd 11257 . . . 4  |-  ( N  e.  NN  ->  (
2  /  N )  e.  CC )
7 cxpcl 22799 . . . 4  |-  ( (
-u 1  e.  CC  /\  ( 2  /  N
)  e.  CC )  ->  ( -u 1  ^c  ( 2  /  N ) )  e.  CC )
81, 6, 7sylancr 663 . . 3  |-  ( N  e.  NN  ->  ( -u 1  ^c  ( 2  /  N ) )  e.  CC )
91a1i 11 . . . 4  |-  ( N  e.  NN  ->  -u 1  e.  CC )
10 neg1ne0 10640 . . . . 5  |-  -u 1  =/=  0
1110a1i 11 . . . 4  |-  ( N  e.  NN  ->  -u 1  =/=  0 )
129, 11, 6cxpne0d 22838 . . 3  |-  ( N  e.  NN  ->  ( -u 1  ^c  ( 2  /  N ) )  =/=  0 )
13 eldifsn 4152 . . 3  |-  ( (
-u 1  ^c 
( 2  /  N
) )  e.  ( CC  \  { 0 } )  <->  ( ( -u 1  ^c  ( 2  /  N ) )  e.  CC  /\  ( -u 1  ^c 
( 2  /  N
) )  =/=  0
) )
148, 12, 13sylanbrc 664 . 2  |-  ( N  e.  NN  ->  ( -u 1  ^c  ( 2  /  N ) )  e.  ( CC 
\  { 0 } ) )
151a1i 11 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  ->  -u 1  e.  CC )
1610a1i 11 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  ->  -u 1  =/=  0 )
17 nn0cn 10804 . . . . . . . . . 10  |-  ( x  e.  NN0  ->  x  e.  CC )
18 mulcl 9575 . . . . . . . . . 10  |-  ( ( ( 2  /  N
)  e.  CC  /\  x  e.  CC )  ->  ( ( 2  /  N )  x.  x
)  e.  CC )
196, 17, 18syl2an 477 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( 2  /  N )  x.  x
)  e.  CC )
2015, 16, 19cxpefd 22837 . . . . . . . 8  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( -u 1  ^c 
( ( 2  /  N )  x.  x
) )  =  ( exp `  ( ( ( 2  /  N
)  x.  x )  x.  ( log `  -u 1
) ) ) )
2120eqeq1d 2469 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( -u 1  ^c  ( (
2  /  N )  x.  x ) )  =  1  <->  ( exp `  ( ( ( 2  /  N )  x.  x )  x.  ( log `  -u 1 ) ) )  =  1 ) )
22 logcl 22700 . . . . . . . . . 10  |-  ( (
-u 1  e.  CC  /\  -u 1  =/=  0
)  ->  ( log `  -u 1 )  e.  CC )
231, 10, 22mp2an 672 . . . . . . . . 9  |-  ( log `  -u 1 )  e.  CC
24 mulcl 9575 . . . . . . . . 9  |-  ( ( ( ( 2  /  N )  x.  x
)  e.  CC  /\  ( log `  -u 1
)  e.  CC )  ->  ( ( ( 2  /  N )  x.  x )  x.  ( log `  -u 1
) )  e.  CC )
2519, 23, 24sylancl 662 . . . . . . . 8  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( ( 2  /  N )  x.  x )  x.  ( log `  -u 1 ) )  e.  CC )
26 efeq1 22665 . . . . . . . 8  |-  ( ( ( ( 2  /  N )  x.  x
)  x.  ( log `  -u 1 ) )  e.  CC  ->  (
( exp `  (
( ( 2  /  N )  x.  x
)  x.  ( log `  -u 1 ) ) )  =  1  <->  (
( ( ( 2  /  N )  x.  x )  x.  ( log `  -u 1 ) )  /  ( _i  x.  ( 2  x.  pi ) ) )  e.  ZZ ) )
2725, 26syl 16 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( exp `  (
( ( 2  /  N )  x.  x
)  x.  ( log `  -u 1 ) ) )  =  1  <->  (
( ( ( 2  /  N )  x.  x )  x.  ( log `  -u 1 ) )  /  ( _i  x.  ( 2  x.  pi ) ) )  e.  ZZ ) )
28 2cn 10605 . . . . . . . . . . . . . 14  |-  2  e.  CC
2928a1i 11 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
2  e.  CC )
30 nncn 10543 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  CC )
3130adantr 465 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  ->  N  e.  CC )
3217adantl 466 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  ->  x  e.  CC )
33 nnne0 10567 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  =/=  0 )
3433adantr 465 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  ->  N  =/=  0 )
3529, 31, 32, 34div13d 10343 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( 2  /  N )  x.  x
)  =  ( ( x  /  N )  x.  2 ) )
36 logm1 22717 . . . . . . . . . . . . 13  |-  ( log `  -u 1 )  =  ( _i  x.  pi )
3736a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( log `  -u 1
)  =  ( _i  x.  pi ) )
3835, 37oveq12d 6301 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( ( 2  /  N )  x.  x )  x.  ( log `  -u 1 ) )  =  ( ( ( x  /  N )  x.  2 )  x.  ( _i  x.  pi ) ) )
3932, 31, 34divcld 10319 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( x  /  N
)  e.  CC )
40 ax-icn 9550 . . . . . . . . . . . . . 14  |-  _i  e.  CC
41 pire 22601 . . . . . . . . . . . . . . 15  |-  pi  e.  RR
4241recni 9607 . . . . . . . . . . . . . 14  |-  pi  e.  CC
4340, 42mulcli 9600 . . . . . . . . . . . . 13  |-  ( _i  x.  pi )  e.  CC
4443a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( _i  x.  pi )  e.  CC )
4539, 29, 44mulassd 9618 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( ( x  /  N )  x.  2 )  x.  (
_i  x.  pi )
)  =  ( ( x  /  N )  x.  ( 2  x.  ( _i  x.  pi ) ) ) )
4640a1i 11 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  ->  _i  e.  CC )
4742a1i 11 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  ->  pi  e.  CC )
4829, 46, 47mul12d 9787 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( 2  x.  (
_i  x.  pi )
)  =  ( _i  x.  ( 2  x.  pi ) ) )
4948oveq2d 6299 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( x  /  N )  x.  (
2  x.  ( _i  x.  pi ) ) )  =  ( ( x  /  N )  x.  ( _i  x.  ( 2  x.  pi ) ) ) )
5038, 45, 493eqtrd 2512 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( ( 2  /  N )  x.  x )  x.  ( log `  -u 1 ) )  =  ( ( x  /  N )  x.  ( _i  x.  (
2  x.  pi ) ) ) )
5150oveq1d 6298 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( ( ( 2  /  N )  x.  x )  x.  ( log `  -u 1
) )  /  (
_i  x.  ( 2  x.  pi ) ) )  =  ( ( ( x  /  N
)  x.  ( _i  x.  ( 2  x.  pi ) ) )  /  ( _i  x.  ( 2  x.  pi ) ) ) )
5228, 42mulcli 9600 . . . . . . . . . . . 12  |-  ( 2  x.  pi )  e.  CC
5340, 52mulcli 9600 . . . . . . . . . . 11  |-  ( _i  x.  ( 2  x.  pi ) )  e.  CC
5453a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( _i  x.  (
2  x.  pi ) )  e.  CC )
55 ine0 9991 . . . . . . . . . . . 12  |-  _i  =/=  0
56 2ne0 10627 . . . . . . . . . . . . 13  |-  2  =/=  0
57 pipos 22603 . . . . . . . . . . . . . 14  |-  0  <  pi
5841, 57gt0ne0ii 10088 . . . . . . . . . . . . 13  |-  pi  =/=  0
5928, 42, 56, 58mulne0i 10191 . . . . . . . . . . . 12  |-  ( 2  x.  pi )  =/=  0
6040, 52, 55, 59mulne0i 10191 . . . . . . . . . . 11  |-  ( _i  x.  ( 2  x.  pi ) )  =/=  0
6160a1i 11 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( _i  x.  (
2  x.  pi ) )  =/=  0 )
6239, 54, 61divcan4d 10325 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( ( x  /  N )  x.  ( _i  x.  (
2  x.  pi ) ) )  /  (
_i  x.  ( 2  x.  pi ) ) )  =  ( x  /  N ) )
6351, 62eqtrd 2508 . . . . . . . 8  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( ( ( 2  /  N )  x.  x )  x.  ( log `  -u 1
) )  /  (
_i  x.  ( 2  x.  pi ) ) )  =  ( x  /  N ) )
6463eleq1d 2536 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( ( ( ( 2  /  N
)  x.  x )  x.  ( log `  -u 1
) )  /  (
_i  x.  ( 2  x.  pi ) ) )  e.  ZZ  <->  ( x  /  N )  e.  ZZ ) )
6521, 27, 643bitrd 279 . . . . . 6  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( -u 1  ^c  ( (
2  /  N )  x.  x ) )  =  1  <->  ( x  /  N )  e.  ZZ ) )
666adantr 465 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( 2  /  N
)  e.  CC )
67 simpr 461 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  ->  x  e.  NN0 )
6815, 66, 67cxpmul2d 22834 . . . . . . . 8  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( -u 1  ^c 
( ( 2  /  N )  x.  x
) )  =  ( ( -u 1  ^c  ( 2  /  N ) ) ^
x ) )
69 cnfldexp 18238 . . . . . . . . 9  |-  ( ( ( -u 1  ^c  ( 2  /  N ) )  e.  CC  /\  x  e. 
NN0 )  ->  (
x (.g `  (mulGrp ` fld ) ) ( -u
1  ^c  ( 2  /  N ) ) )  =  ( ( -u 1  ^c  ( 2  /  N ) ) ^
x ) )
708, 69sylan 471 . . . . . . . 8  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( x (.g `  (mulGrp ` fld ) ) ( -u 1  ^c  ( 2  /  N ) ) )  =  ( (
-u 1  ^c 
( 2  /  N
) ) ^ x
) )
71 cnrng 18227 . . . . . . . . . 10  |-fld  e.  Ring
72 cnfldbas 18211 . . . . . . . . . . . 12  |-  CC  =  ( Base ` fld )
73 cnfld0 18229 . . . . . . . . . . . 12  |-  0  =  ( 0g ` fld )
74 cndrng 18234 . . . . . . . . . . . 12  |-fld  e.  DivRing
7572, 73, 74drngui 17197 . . . . . . . . . . 11  |-  ( CC 
\  { 0 } )  =  (Unit ` fld )
76 eqid 2467 . . . . . . . . . . 11  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
7775, 76unitsubm 17115 . . . . . . . . . 10  |-  (fld  e.  Ring  -> 
( CC  \  {
0 } )  e.  (SubMnd `  (mulGrp ` fld ) ) )
7871, 77mp1i 12 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( CC  \  {
0 } )  e.  (SubMnd `  (mulGrp ` fld ) ) )
7914adantr 465 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( -u 1  ^c 
( 2  /  N
) )  e.  ( CC  \  { 0 } ) )
80 eqid 2467 . . . . . . . . . 10  |-  (.g `  (mulGrp ` fld ) )  =  (.g `  (mulGrp ` fld ) )
81 proot1ex.g . . . . . . . . . 10  |-  G  =  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) )
82 eqid 2467 . . . . . . . . . 10  |-  (.g `  G
)  =  (.g `  G
)
8380, 81, 82submmulg 15984 . . . . . . . . 9  |-  ( ( ( CC  \  {
0 } )  e.  (SubMnd `  (mulGrp ` fld ) )  /\  x  e.  NN0  /\  ( -u
1  ^c  ( 2  /  N ) )  e.  ( CC 
\  { 0 } ) )  ->  (
x (.g `  (mulGrp ` fld ) ) ( -u
1  ^c  ( 2  /  N ) ) )  =  ( x (.g `  G ) (
-u 1  ^c 
( 2  /  N
) ) ) )
8478, 67, 79, 83syl3anc 1228 . . . . . . . 8  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( x (.g `  (mulGrp ` fld ) ) ( -u 1  ^c  ( 2  /  N ) ) )  =  ( x (.g `  G ) (
-u 1  ^c 
( 2  /  N
) ) ) )
8568, 70, 843eqtr2rd 2515 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( x (.g `  G
) ( -u 1  ^c  ( 2  /  N ) ) )  =  ( -u
1  ^c  ( ( 2  /  N
)  x.  x ) ) )
8685eqeq1d 2469 . . . . . 6  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( ( x (.g `  G ) ( -u
1  ^c  ( 2  /  N ) ) )  =  1  <-> 
( -u 1  ^c 
( ( 2  /  N )  x.  x
) )  =  1 ) )
87 nnz 10885 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  ZZ )
8887adantr 465 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  ->  N  e.  ZZ )
89 nn0z 10886 . . . . . . . 8  |-  ( x  e.  NN0  ->  x  e.  ZZ )
9089adantl 466 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  ->  x  e.  ZZ )
91 dvdsval2 13849 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0  /\  x  e.  ZZ )  ->  ( N  ||  x  <->  ( x  /  N )  e.  ZZ ) )
9288, 34, 90, 91syl3anc 1228 . . . . . 6  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( N  ||  x  <->  ( x  /  N )  e.  ZZ ) )
9365, 86, 923bitr4rd 286 . . . . 5  |-  ( ( N  e.  NN  /\  x  e.  NN0 )  -> 
( N  ||  x  <->  ( x (.g `  G ) (
-u 1  ^c 
( 2  /  N
) ) )  =  1 ) )
9493ralrimiva 2878 . . . 4  |-  ( N  e.  NN  ->  A. x  e.  NN0  ( N  ||  x 
<->  ( x (.g `  G
) ( -u 1  ^c  ( 2  /  N ) ) )  =  1 ) )
9575, 81unitgrp 17112 . . . . . 6  |-  (fld  e.  Ring  ->  G  e.  Grp )
9671, 95mp1i 12 . . . . 5  |-  ( N  e.  NN  ->  G  e.  Grp )
97 nnnn0 10801 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN0 )
9875, 81unitgrpbas 17111 . . . . . 6  |-  ( CC 
\  { 0 } )  =  ( Base `  G )
99 proot1ex.o . . . . . 6  |-  O  =  ( od `  G
)
100 cnfld1 18230 . . . . . . . 8  |-  1  =  ( 1r ` fld )
10175, 81, 100unitgrpid 17114 . . . . . . 7  |-  (fld  e.  Ring  -> 
1  =  ( 0g
`  G ) )
10271, 101ax-mp 5 . . . . . 6  |-  1  =  ( 0g `  G )
10398, 99, 82, 102odeq 16377 . . . . 5  |-  ( ( G  e.  Grp  /\  ( -u 1  ^c 
( 2  /  N
) )  e.  ( CC  \  { 0 } )  /\  N  e.  NN0 )  ->  ( N  =  ( O `  ( -u 1  ^c  ( 2  /  N ) ) )  <->  A. x  e.  NN0  ( N  ||  x  <->  ( x
(.g `  G ) (
-u 1  ^c 
( 2  /  N
) ) )  =  1 ) ) )
10496, 14, 97, 103syl3anc 1228 . . . 4  |-  ( N  e.  NN  ->  ( N  =  ( O `  ( -u 1  ^c  ( 2  /  N ) ) )  <->  A. x  e.  NN0  ( N  ||  x  <->  ( x
(.g `  G ) (
-u 1  ^c 
( 2  /  N
) ) )  =  1 ) ) )
10594, 104mpbird 232 . . 3  |-  ( N  e.  NN  ->  N  =  ( O `  ( -u 1  ^c 
( 2  /  N
) ) ) )
106105eqcomd 2475 . 2  |-  ( N  e.  NN  ->  ( O `  ( -u 1  ^c  ( 2  /  N ) ) )  =  N )
10798, 99odf 16364 . . . 4  |-  O :
( CC  \  {
0 } ) --> NN0
108 ffn 5730 . . . 4  |-  ( O : ( CC  \  { 0 } ) --> NN0  ->  O  Fn  ( CC  \  { 0 } ) )
109107, 108ax-mp 5 . . 3  |-  O  Fn  ( CC  \  { 0 } )
110 fniniseg 6001 . . 3  |-  ( O  Fn  ( CC  \  { 0 } )  ->  ( ( -u
1  ^c  ( 2  /  N ) )  e.  ( `' O " { N } )  <->  ( ( -u 1  ^c  ( 2  /  N ) )  e.  ( CC 
\  { 0 } )  /\  ( O `
 ( -u 1  ^c  ( 2  /  N ) ) )  =  N ) ) )
111109, 110mp1i 12 . 2  |-  ( N  e.  NN  ->  (
( -u 1  ^c 
( 2  /  N
) )  e.  ( `' O " { N } )  <->  ( ( -u 1  ^c  ( 2  /  N ) )  e.  ( CC 
\  { 0 } )  /\  ( O `
 ( -u 1  ^c  ( 2  /  N ) ) )  =  N ) ) )
11214, 106, 111mpbir2and 920 1  |-  ( N  e.  NN  ->  ( -u 1  ^c  ( 2  /  N ) )  e.  ( `' O " { N } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814    \ cdif 3473   {csn 4027   class class class wbr 4447   `'ccnv 4998   "cima 5002    Fn wfn 5582   -->wf 5583   ` cfv 5587  (class class class)co 6283   CCcc 9489   0cc0 9491   1c1 9492   _ici 9493    x. cmul 9496   -ucneg 9805    / cdiv 10205   NNcn 10535   2c2 10584   NN0cn0 10794   ZZcz 10863   RR+crp 11219   ^cexp 12133   expce 13658   picpi 13663    || cdivides 13846   ↾s cress 14490   0gc0g 14694   Grpcgrp 15726  .gcmg 15730  SubMndcsubmnd 15782   odcod 16352  mulGrpcmgp 16940   Ringcrg 16995  ℂfldccnfld 18207   logclog 22686    ^c ccxp 22687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-inf2 8057  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569  ax-addf 9570  ax-mulf 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-isom 5596  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-of 6523  df-om 6680  df-1st 6784  df-2nd 6785  df-supp 6902  df-tpos 6955  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7829  df-fi 7870  df-sup 7900  df-oi 7934  df-card 8319  df-cda 8547  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-4 10595  df-5 10596  df-6 10597  df-7 10598  df-8 10599  df-9 10600  df-10 10601  df-n0 10795  df-z 10864  df-dec 10976  df-uz 11082  df-q 11182  df-rp 11220  df-xneg 11317  df-xadd 11318  df-xmul 11319  df-ioo 11532  df-ioc 11533  df-ico 11534  df-icc 11535  df-fz 11672  df-fzo 11792  df-fl 11896  df-mod 11964  df-seq 12075  df-exp 12134  df-fac 12321  df-bc 12348  df-hash 12373  df-shft 12862  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-limsup 13256  df-clim 13273  df-rlim 13274  df-sum 13471  df-ef 13664  df-sin 13666  df-cos 13667  df-pi 13669  df-dvds 13847  df-struct 14491  df-ndx 14492  df-slot 14493  df-base 14494  df-sets 14495  df-ress 14496  df-plusg 14567  df-mulr 14568  df-starv 14569  df-sca 14570  df-vsca 14571  df-ip 14572  df-tset 14573  df-ple 14574  df-ds 14576  df-unif 14577  df-hom 14578  df-cco 14579  df-rest 14677  df-topn 14678  df-0g 14696  df-gsum 14697  df-topgen 14698  df-pt 14699  df-prds 14702  df-xrs 14756  df-qtop 14761  df-imas 14762  df-xps 14764  df-mre 14840  df-mrc 14841  df-acs 14843  df-mnd 15731  df-submnd 15784  df-grp 15864  df-minusg 15865  df-sbg 15866  df-mulg 15867  df-cntz 16157  df-od 16356  df-cmn 16603  df-mgp 16941  df-ur 16953  df-rng 16997  df-cring 16998  df-oppr 17068  df-dvdsr 17086  df-unit 17087  df-invr 17117  df-dvr 17128  df-drng 17193  df-psmet 18198  df-xmet 18199  df-met 18200  df-bl 18201  df-mopn 18202  df-fbas 18203  df-fg 18204  df-cnfld 18208  df-top 19182  df-bases 19184  df-topon 19185  df-topsp 19186  df-cld 19302  df-ntr 19303  df-cls 19304  df-nei 19381  df-lp 19419  df-perf 19420  df-cn 19510  df-cnp 19511  df-haus 19598  df-tx 19814  df-hmeo 20007  df-fil 20098  df-fm 20190  df-flim 20191  df-flf 20192  df-xms 20574  df-ms 20575  df-tms 20576  df-cncf 21133  df-limc 22021  df-dv 22022  df-log 22688  df-cxp 22689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator