Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodsn Structured version   Unicode version

Theorem prodsn 29067
Description: A product of a singleton is the term. (Contributed by Scott Fenton, 14-Dec-2017.)
Hypothesis
Ref Expression
prodsn.1  |-  ( k  =  M  ->  A  =  B )
Assertion
Ref Expression
prodsn  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  B )
Distinct variable groups:    B, k    k, M    k, V
Allowed substitution hint:    A( k)

Proof of Theorem prodsn
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2605 . . . 4  |-  F/_ m A
2 nfcsb1v 3436 . . . 4  |-  F/_ k [_ m  /  k ]_ A
3 csbeq1a 3429 . . . 4  |-  ( k  =  m  ->  A  =  [_ m  /  k ]_ A )
41, 2, 3cbvprodi 29024 . . 3  |-  prod_ k  e.  { M } A  =  prod_ m  e.  { M } [_ m  / 
k ]_ A
5 csbeq1 3423 . . . 4  |-  ( m  =  ( { <. 1 ,  M >. } `
 n )  ->  [_ m  /  k ]_ A  =  [_ ( { <. 1 ,  M >. } `  n )  /  k ]_ A
)
6 1nn 10553 . . . . 5  |-  1  e.  NN
76a1i 11 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  1  e.  NN )
8 1z 10900 . . . . . 6  |-  1  e.  ZZ
9 f1osng 5844 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  M  e.  V )  ->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
10 fzsn 11734 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  (
1 ... 1 )  =  { 1 } )
118, 10ax-mp 5 . . . . . . . 8  |-  ( 1 ... 1 )  =  { 1 }
12 f1oeq2 5798 . . . . . . . 8  |-  ( ( 1 ... 1 )  =  { 1 }  ->  ( { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M }  <->  { <. 1 ,  M >. } : {
1 } -1-1-onto-> { M } ) )
1311, 12ax-mp 5 . . . . . . 7  |-  ( {
<. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } 
<->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
149, 13sylibr 212 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  M  e.  V )  ->  { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } )
158, 14mpan 670 . . . . 5  |-  ( M  e.  V  ->  { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } )
1615adantr 465 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } )
17 elsn 4028 . . . . . 6  |-  ( m  e.  { M }  <->  m  =  M )
18 csbeq1 3423 . . . . . . 7  |-  ( m  =  M  ->  [_ m  /  k ]_ A  =  [_ M  /  k ]_ A )
19 nfcvd 2606 . . . . . . . . 9  |-  ( M  e.  V  ->  F/_ k B )
20 prodsn.1 . . . . . . . . 9  |-  ( k  =  M  ->  A  =  B )
2119, 20csbiegf 3444 . . . . . . . 8  |-  ( M  e.  V  ->  [_ M  /  k ]_ A  =  B )
2221adantr 465 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  [_ M  /  k ]_ A  =  B
)
2318, 22sylan9eqr 2506 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  =  M )  ->  [_ m  / 
k ]_ A  =  B )
2417, 23sylan2b 475 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ m  /  k ]_ A  =  B )
25 simplr 755 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  B  e.  CC )
2624, 25eqeltrd 2531 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ m  /  k ]_ A  e.  CC )
2711eleq2i 2521 . . . . . 6  |-  ( n  e.  ( 1 ... 1 )  <->  n  e.  { 1 } )
28 elsn 4028 . . . . . 6  |-  ( n  e.  { 1 }  <-> 
n  =  1 )
2927, 28bitri 249 . . . . 5  |-  ( n  e.  ( 1 ... 1 )  <->  n  = 
1 )
30 fvsng 6090 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ  /\  M  e.  V )  ->  ( { <. 1 ,  M >. } `  1
)  =  M )
318, 30mpan 670 . . . . . . . . . 10  |-  ( M  e.  V  ->  ( { <. 1 ,  M >. } `  1 )  =  M )
3231adantr 465 . . . . . . . . 9  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  M >. } `  1
)  =  M )
3332csbeq1d 3427 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  [_ ( { <. 1 ,  M >. } `
 1 )  / 
k ]_ A  =  [_ M  /  k ]_ A
)
34 simpr 461 . . . . . . . . 9  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  B  e.  CC )
35 fvsng 6090 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  B )
368, 34, 35sylancr 663 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  B )
3722, 33, 363eqtr4rd 2495 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  [_ ( { <. 1 ,  M >. } `  1 )  /  k ]_ A
)
38 fveq2 5856 . . . . . . . 8  |-  ( n  =  1  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 1 ) )
39 fveq2 5856 . . . . . . . . 9  |-  ( n  =  1  ->  ( { <. 1 ,  M >. } `  n )  =  ( { <. 1 ,  M >. } `
 1 ) )
4039csbeq1d 3427 . . . . . . . 8  |-  ( n  =  1  ->  [_ ( { <. 1 ,  M >. } `  n )  /  k ]_ A  =  [_ ( { <. 1 ,  M >. } `
 1 )  / 
k ]_ A )
4138, 40eqeq12d 2465 . . . . . . 7  |-  ( n  =  1  ->  (
( { <. 1 ,  B >. } `  n
)  =  [_ ( { <. 1 ,  M >. } `  n )  /  k ]_ A  <->  ( { <. 1 ,  B >. } `  1 )  =  [_ ( {
<. 1 ,  M >. } `  1 )  /  k ]_ A
) )
4237, 41syl5ibrcom 222 . . . . . 6  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( n  =  1  ->  ( { <. 1 ,  B >. } `
 n )  = 
[_ ( { <. 1 ,  M >. } `
 n )  / 
k ]_ A ) )
4342imp 429 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  =  1 )  ->  ( { <. 1 ,  B >. } `
 n )  = 
[_ ( { <. 1 ,  M >. } `
 n )  / 
k ]_ A )
4429, 43sylan2b 475 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  ( { <. 1 ,  B >. } `
 n )  = 
[_ ( { <. 1 ,  M >. } `
 n )  / 
k ]_ A )
455, 7, 16, 26, 44fprod 29048 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ m  e.  { M } [_ m  / 
k ]_ A  =  (  seq 1 (  x.  ,  { <. 1 ,  B >. } ) ` 
1 ) )
464, 45syl5eq 2496 . 2  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  (  seq 1 (  x.  ,  { <. 1 ,  B >. } ) ` 
1 ) )
478, 36seq1i 12100 . 2  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  (  seq 1 (  x.  ,  { <. 1 ,  B >. } ) `  1 )  =  B )
4846, 47eqtrd 2484 1  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804   [_csb 3420   {csn 4014   <.cop 4020   -1-1-onto->wf1o 5577   ` cfv 5578  (class class class)co 6281   CCcc 9493   1c1 9496    x. cmul 9500   NNcn 10542   ZZcz 10870   ...cfz 11681    seqcseq 12086   prod_cprod 29012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-sup 7903  df-oi 7938  df-card 8323  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10213  df-nn 10543  df-2 10600  df-3 10601  df-n0 10802  df-z 10871  df-uz 11091  df-rp 11230  df-fz 11682  df-fzo 11804  df-seq 12087  df-exp 12146  df-hash 12385  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-clim 13290  df-prod 29013
This theorem is referenced by:  fprod1  29068  fprodm1  29071  fprod1p  29072  prodsns  29076  fprodefsum  29079  fprod2dlem  29085
  Copyright terms: Public domain W3C validator