Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodrb Structured version   Unicode version

Theorem prodrb 27464
Description: Rebase the starting point of a product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodrb.4  |-  ( ph  ->  M  e.  ZZ )
prodrb.5  |-  ( ph  ->  N  e.  ZZ )
prodrb.6  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
prodrb.7  |-  ( ph  ->  A  C_  ( ZZ>= `  N ) )
Assertion
Ref Expression
prodrb  |-  ( ph  ->  (  seq M (  x.  ,  F )  ~~>  C  <->  seq N (  x.  ,  F )  ~~>  C ) )
Distinct variable groups:    A, k    k, F    ph, k    k, N   
k, M
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem prodrb
StepHypRef Expression
1 prodmo.1 . . 3  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
2 prodmo.2 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
3 prodrb.4 . . 3  |-  ( ph  ->  M  e.  ZZ )
4 prodrb.5 . . 3  |-  ( ph  ->  N  e.  ZZ )
5 prodrb.6 . . 3  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
6 prodrb.7 . . 3  |-  ( ph  ->  A  C_  ( ZZ>= `  N ) )
71, 2, 3, 4, 5, 6prodrblem2 27463 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  M )
)  ->  (  seq M (  x.  ,  F )  ~~>  C  <->  seq N (  x.  ,  F )  ~~>  C ) )
81, 2, 4, 3, 6, 5prodrblem2 27463 . . 3  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  (  seq N (  x.  ,  F )  ~~>  C  <->  seq M (  x.  ,  F )  ~~>  C ) )
98bicomd 201 . 2  |-  ( (
ph  /\  M  e.  ( ZZ>= `  N )
)  ->  (  seq M (  x.  ,  F )  ~~>  C  <->  seq N (  x.  ,  F )  ~~>  C ) )
10 uztric 10901 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N ) ) )
113, 4, 10syl2anc 661 . 2  |-  ( ph  ->  ( N  e.  (
ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N ) ) )
127, 9, 11mpjaodan 784 1  |-  ( ph  ->  (  seq M (  x.  ,  F )  ~~>  C  <->  seq N (  x.  ,  F )  ~~>  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    C_ wss 3347   ifcif 3810   class class class wbr 4311    e. cmpt 4369   ` cfv 5437   CCcc 9299   1c1 9302    x. cmul 9306   ZZcz 10665   ZZ>=cuz 10880    seqcseq 11825    ~~> cli 12981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4422  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391  ax-inf2 7866  ax-cnex 9357  ax-resscn 9358  ax-1cn 9359  ax-icn 9360  ax-addcl 9361  ax-addrcl 9362  ax-mulcl 9363  ax-mulrcl 9364  ax-mulcom 9365  ax-addass 9366  ax-mulass 9367  ax-distr 9368  ax-i2m1 9369  ax-1ne0 9370  ax-1rid 9371  ax-rnegex 9372  ax-rrecex 9373  ax-cnre 9374  ax-pre-lttri 9375  ax-pre-lttrn 9376  ax-pre-ltadd 9377  ax-pre-mulgt0 9378
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2739  df-rex 2740  df-reu 2741  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-pss 3363  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-tp 3901  df-op 3903  df-uni 4111  df-iun 4192  df-br 4312  df-opab 4370  df-mpt 4371  df-tr 4405  df-eprel 4651  df-id 4655  df-po 4660  df-so 4661  df-fr 4698  df-we 4700  df-ord 4741  df-on 4742  df-lim 4743  df-suc 4744  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-f1 5442  df-fo 5443  df-f1o 5444  df-fv 5445  df-riota 6071  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-om 6496  df-1st 6596  df-2nd 6597  df-recs 6851  df-rdg 6885  df-er 7120  df-en 7330  df-dom 7331  df-sdom 7332  df-pnf 9439  df-mnf 9440  df-xr 9441  df-ltxr 9442  df-le 9443  df-sub 9616  df-neg 9617  df-nn 10342  df-n0 10599  df-z 10666  df-uz 10881  df-fz 11457  df-seq 11826  df-clim 12985
This theorem is referenced by:  prodmo  27468  zprod  27469
  Copyright terms: Public domain W3C validator