Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodmo Unicode version

Theorem prodmo 25215
Description: A product has at most one limit. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodmo.3  |-  G  =  ( j  e.  NN  |->  [_ ( f `  j
)  /  k ]_ B )
Assertion
Ref Expression
prodmo  |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  F
)  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m
) ) ) )
Distinct variable groups:    A, k, n    k, F, n    ph, k, n    A, f, j, m, x    B, f, j, m   
f, F, j, k, m    ph, f, x    x, F    j, G, x    j,
k, m, ph, x    x, n, ph    x, y
Allowed substitution hints:    ph( y)    A( y)    B( x, y, k, n)    F( y)    G( y, f, k, m, n)

Proof of Theorem prodmo
Dummy variables  a 
g  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpb 955 . . . . . . 7  |-  ( ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  F )  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  x )  ->  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  x.  ,  F )  ~~>  x ) )
21reximi 2773 . . . . . 6  |-  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  F
)  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  x )  ->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  x.  ,  F )  ~~>  x ) )
3 3simpb 955 . . . . . . 7  |-  ( ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  F )  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  z )  ->  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  x.  ,  F )  ~~>  z ) )
43reximi 2773 . . . . . 6  |-  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  F
)  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  z )  ->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  x.  ,  F )  ~~>  z ) )
5 fveq2 5687 . . . . . . . . . . . 12  |-  ( m  =  w  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  w )
)
65sseq2d 3336 . . . . . . . . . . 11  |-  ( m  =  w  ->  ( A  C_  ( ZZ>= `  m
)  <->  A  C_  ( ZZ>= `  w ) ) )
7 seqeq1 11281 . . . . . . . . . . . 12  |-  ( m  =  w  ->  seq  m (  x.  ,  F )  =  seq  w (  x.  ,  F ) )
87breq1d 4182 . . . . . . . . . . 11  |-  ( m  =  w  ->  (  seq  m (  x.  ,  F )  ~~>  z  <->  seq  w (  x.  ,  F )  ~~>  z ) )
96, 8anbi12d 692 . . . . . . . . . 10  |-  ( m  =  w  ->  (
( A  C_  ( ZZ>=
`  m )  /\  seq  m (  x.  ,  F )  ~~>  z )  <-> 
( A  C_  ( ZZ>=
`  w )  /\  seq  w (  x.  ,  F )  ~~>  z ) ) )
109cbvrexv 2893 . . . . . . . . 9  |-  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  x.  ,  F )  ~~>  z )  <->  E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w )  /\  seq  w (  x.  ,  F )  ~~>  z ) )
1110anbi2i 676 . . . . . . . 8  |-  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  x.  ,  F )  ~~>  z ) )  <->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w )  /\  seq  w (  x.  ,  F )  ~~>  z ) ) )
12 reeanv 2835 . . . . . . . 8  |-  ( E. m  e.  ZZ  E. w  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  seq  w (  x.  ,  F )  ~~>  z ) )  <->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w )  /\  seq  w (  x.  ,  F )  ~~>  z ) ) )
1311, 12bitr4i 244 . . . . . . 7  |-  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  x.  ,  F )  ~~>  z ) )  <->  E. m  e.  ZZ  E. w  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  seq  w (  x.  ,  F )  ~~>  z ) ) )
14 simprlr 740 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w
)  /\  seq  w (  x.  ,  F )  ~~>  z ) ) )  ->  seq  m (  x.  ,  F )  ~~>  x )
1514adantl 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  seq  w (  x.  ,  F )  ~~>  z ) ) ) )  ->  seq  m (  x.  ,  F )  ~~>  x )
16 prodmo.1 . . . . . . . . . . . . 13  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
17 prodmo.2 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1817adantlr 696 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w
)  /\  seq  w (  x.  ,  F )  ~~>  z ) ) ) )  /\  k  e.  A )  ->  B  e.  CC )
19 simprll 739 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  seq  w (  x.  ,  F )  ~~>  z ) ) ) )  ->  m  e.  ZZ )
20 simprlr 740 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  seq  w (  x.  ,  F )  ~~>  z ) ) ) )  ->  w  e.  ZZ )
21 simprll 739 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w
)  /\  seq  w (  x.  ,  F )  ~~>  z ) ) )  ->  A  C_  ( ZZ>=
`  m ) )
2221adantl 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  seq  w (  x.  ,  F )  ~~>  z ) ) ) )  ->  A  C_  ( ZZ>= `  m
) )
23 simprrl 741 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w
)  /\  seq  w (  x.  ,  F )  ~~>  z ) ) )  ->  A  C_  ( ZZ>=
`  w ) )
2423adantl 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  seq  w (  x.  ,  F )  ~~>  z ) ) ) )  ->  A  C_  ( ZZ>= `  w
) )
2516, 18, 19, 20, 22, 24prodrb 25211 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  seq  w (  x.  ,  F )  ~~>  z ) ) ) )  -> 
(  seq  m (  x.  ,  F )  ~~>  x  <->  seq  w (  x.  ,  F )  ~~>  x ) )
2615, 25mpbid 202 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  seq  w (  x.  ,  F )  ~~>  z ) ) ) )  ->  seq  w (  x.  ,  F )  ~~>  x )
27 simprrr 742 . . . . . . . . . . . 12  |-  ( ( ( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w
)  /\  seq  w (  x.  ,  F )  ~~>  z ) ) )  ->  seq  w (  x.  ,  F )  ~~>  z )
2827adantl 453 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  seq  w (  x.  ,  F )  ~~>  z ) ) ) )  ->  seq  w (  x.  ,  F )  ~~>  z )
29 climuni 12301 . . . . . . . . . . 11  |-  ( (  seq  w (  x.  ,  F )  ~~>  x  /\  seq  w (  x.  ,  F )  ~~>  z )  ->  x  =  z )
3026, 28, 29syl2anc 643 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A  C_  ( ZZ>= `  m )  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  seq  w (  x.  ,  F )  ~~>  z ) ) ) )  ->  x  =  z )
3130expcom 425 . . . . . . . . 9  |-  ( ( ( m  e.  ZZ  /\  w  e.  ZZ )  /\  ( ( A 
C_  ( ZZ>= `  m
)  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w
)  /\  seq  w (  x.  ,  F )  ~~>  z ) ) )  ->  ( ph  ->  x  =  z ) )
3231ex 424 . . . . . . . 8  |-  ( ( m  e.  ZZ  /\  w  e.  ZZ )  ->  ( ( ( A 
C_  ( ZZ>= `  m
)  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w
)  /\  seq  w (  x.  ,  F )  ~~>  z ) )  -> 
( ph  ->  x  =  z ) ) )
3332rexlimivv 2795 . . . . . . 7  |-  ( E. m  e.  ZZ  E. w  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  ( A  C_  ( ZZ>= `  w )  /\  seq  w (  x.  ,  F )  ~~>  z ) )  ->  ( ph  ->  x  =  z ) )
3413, 33sylbi 188 . . . . . 6  |-  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  x.  ,  F )  ~~>  z ) )  ->  ( ph  ->  x  =  z ) )
352, 4, 34syl2an 464 . . . . 5  |-  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  F )  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  F
)  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  z ) )  ->  ( ph  ->  x  =  z ) )
36 prodmo.3 . . . . . . . . . 10  |-  G  =  ( j  e.  NN  |->  [_ ( f `  j
)  /  k ]_ B )
3716, 17, 36prodmolem2 25214 . . . . . . . . 9  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  F
)  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  z ) )  ->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m ) )  -> 
z  =  x ) )
38 equcomi 1687 . . . . . . . . 9  |-  ( z  =  x  ->  x  =  z )
3937, 38syl6 31 . . . . . . . 8  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  F
)  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  z ) )  ->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m ) )  ->  x  =  z )
)
4039expimpd 587 . . . . . . 7  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  F
)  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  z )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m
) ) )  ->  x  =  z )
)
4140com12 29 . . . . . 6  |-  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  F )  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  z )  /\  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m ) ) )  ->  ( ph  ->  x  =  z ) )
4241ancoms 440 . . . . 5  |-  ( ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m ) )  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  F
)  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  z ) )  ->  ( ph  ->  x  =  z ) )
4316, 17, 36prodmolem2 25214 . . . . . . 7  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  F
)  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  x ) )  ->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  m ) )  ->  x  =  z )
)
4443expimpd 587 . . . . . 6  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  F
)  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  m
) ) )  ->  x  =  z )
)
4544com12 29 . . . . 5  |-  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  F )  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  x )  /\  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  m ) ) )  ->  ( ph  ->  x  =  z ) )
46 reeanv 2835 . . . . . . . 8  |-  ( E. m  e.  NN  E. w  e.  NN  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m ) )  /\  E. g ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  ( j  e.  NN  |->  [_ ( g `  j )  /  k ]_ B ) ) `  w ) ) )  <-> 
( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m
) )  /\  E. w  e.  NN  E. g
( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  ( j  e.  NN  |->  [_ ( g `  j )  /  k ]_ B ) ) `  w ) ) ) )
47 eeanv 1933 . . . . . . . . 9  |-  ( E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m ) )  /\  ( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  ( j  e.  NN  |->  [_ ( g `  j )  /  k ]_ B ) ) `  w ) ) )  <-> 
( E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m
) )  /\  E. g ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  ( j  e.  NN  |->  [_ ( g `  j )  /  k ]_ B ) ) `  w ) ) ) )
48472rexbii 2693 . . . . . . . 8  |-  ( E. m  e.  NN  E. w  e.  NN  E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `
 m ) )  /\  ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  ( j  e.  NN  |->  [_ ( g `  j )  /  k ]_ B ) ) `  w ) ) )  <->  E. m  e.  NN  E. w  e.  NN  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m ) )  /\  E. g ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  ( j  e.  NN  |->  [_ ( g `  j )  /  k ]_ B ) ) `  w ) ) ) )
49 oveq2 6048 . . . . . . . . . . . . . 14  |-  ( m  =  w  ->  (
1 ... m )  =  ( 1 ... w
) )
50 f1oeq2 5625 . . . . . . . . . . . . . 14  |-  ( ( 1 ... m )  =  ( 1 ... w )  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... w
)
-1-1-onto-> A ) )
5149, 50syl 16 . . . . . . . . . . . . 13  |-  ( m  =  w  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... w
)
-1-1-onto-> A ) )
52 fveq2 5687 . . . . . . . . . . . . . 14  |-  ( m  =  w  ->  (  seq  1 (  x.  ,  G ) `  m
)  =  (  seq  1 (  x.  ,  G ) `  w
) )
5352eqeq2d 2415 . . . . . . . . . . . . 13  |-  ( m  =  w  ->  (
z  =  (  seq  1 (  x.  ,  G ) `  m
)  <->  z  =  (  seq  1 (  x.  ,  G ) `  w ) ) )
5451, 53anbi12d 692 . . . . . . . . . . . 12  |-  ( m  =  w  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  m ) )  <->  ( f : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `
 w ) ) ) )
5554exbidv 1633 . . . . . . . . . . 11  |-  ( m  =  w  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  m ) )  <->  E. f
( f : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  w ) ) ) )
56 f1oeq1 5624 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  (
f : ( 1 ... w ) -1-1-onto-> A  <->  g :
( 1 ... w
)
-1-1-onto-> A ) )
57 fveq1 5686 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  g  ->  (
f `  j )  =  ( g `  j ) )
5857csbeq1d 3217 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  g  ->  [_ (
f `  j )  /  k ]_ B  =  [_ ( g `  j )  /  k ]_ B )
5958mpteq2dv 4256 . . . . . . . . . . . . . . . . 17  |-  ( f  =  g  ->  (
j  e.  NN  |->  [_ ( f `  j
)  /  k ]_ B )  =  ( j  e.  NN  |->  [_ ( g `  j
)  /  k ]_ B ) )
6036, 59syl5eq 2448 . . . . . . . . . . . . . . . 16  |-  ( f  =  g  ->  G  =  ( j  e.  NN  |->  [_ ( g `  j )  /  k ]_ B ) )
6160seqeq3d 11286 . . . . . . . . . . . . . . 15  |-  ( f  =  g  ->  seq  1 (  x.  ,  G )  =  seq  1 (  x.  , 
( j  e.  NN  |->  [_ ( g `  j
)  /  k ]_ B ) ) )
6261fveq1d 5689 . . . . . . . . . . . . . 14  |-  ( f  =  g  ->  (  seq  1 (  x.  ,  G ) `  w
)  =  (  seq  1 (  x.  , 
( j  e.  NN  |->  [_ ( g `  j
)  /  k ]_ B ) ) `  w ) )
6362eqeq2d 2415 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  (
z  =  (  seq  1 (  x.  ,  G ) `  w
)  <->  z  =  (  seq  1 (  x.  ,  ( j  e.  NN  |->  [_ ( g `  j )  /  k ]_ B ) ) `  w ) ) )
6456, 63anbi12d 692 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
( f : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  w ) )  <->  ( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  ( j  e.  NN  |->  [_ (
g `  j )  /  k ]_ B
) ) `  w
) ) ) )
6564cbvexv 2053 . . . . . . . . . . 11  |-  ( E. f ( f : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  w ) )  <->  E. g
( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  ( j  e.  NN  |->  [_ ( g `  j )  /  k ]_ B ) ) `  w ) ) )
6655, 65syl6bb 253 . . . . . . . . . 10  |-  ( m  =  w  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  m ) )  <->  E. g
( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  ( j  e.  NN  |->  [_ ( g `  j )  /  k ]_ B ) ) `  w ) ) ) )
6766cbvrexv 2893 . . . . . . . . 9  |-  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  m ) )  <->  E. w  e.  NN  E. g ( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  , 
( j  e.  NN  |->  [_ ( g `  j
)  /  k ]_ B ) ) `  w ) ) )
6867anbi2i 676 . . . . . . . 8  |-  ( ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m ) )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  m ) ) )  <-> 
( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m
) )  /\  E. w  e.  NN  E. g
( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  ( j  e.  NN  |->  [_ ( g `  j )  /  k ]_ B ) ) `  w ) ) ) )
6946, 48, 683bitr4i 269 . . . . . . 7  |-  ( E. m  e.  NN  E. w  e.  NN  E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `
 m ) )  /\  ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  ( j  e.  NN  |->  [_ ( g `  j )  /  k ]_ B ) ) `  w ) ) )  <-> 
( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m
) )  /\  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  m ) ) ) )
70 an4 798 . . . . . . . . . 10  |-  ( ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m ) )  /\  ( g : ( 1 ... w ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  ( j  e.  NN  |->  [_ ( g `  j )  /  k ]_ B ) ) `  w ) ) )  <-> 
( ( f : ( 1 ... m
)
-1-1-onto-> A  /\  g : ( 1 ... w ) -1-1-onto-> A )  /\  ( x  =  (  seq  1
(  x.  ,  G
) `  m )  /\  z  =  (  seq  1 (  x.  , 
( j  e.  NN  |->  [_ ( g `  j
)  /  k ]_ B ) ) `  w ) ) ) )
71 simpll 731 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  NN  /\  w  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A ) )  ->  ph )
7271, 17sylan 458 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  w  e.  NN ) )  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A ) )  /\  k  e.  A )  ->  B  e.  CC )
73 fveq2 5687 . . . . . . . . . . . . . . . 16  |-  ( j  =  a  ->  (
f `  j )  =  ( f `  a ) )
7473csbeq1d 3217 . . . . . . . . . . . . . . 15  |-  ( j  =  a  ->  [_ (
f `  j )  /  k ]_ B  =  [_ ( f `  a )  /  k ]_ B )
7574cbvmptv 4260 . . . . . . . . . . . . . 14  |-  ( j  e.  NN  |->  [_ (
f `  j )  /  k ]_ B
)  =  ( a  e.  NN  |->  [_ (
f `  a )  /  k ]_ B
)
7636, 75eqtri 2424 . . . . . . . . . . . . 13  |-  G  =  ( a  e.  NN  |->  [_ ( f `  a
)  /  k ]_ B )
77 fveq2 5687 . . . . . . . . . . . . . . 15  |-  ( j  =  a  ->  (
g `  j )  =  ( g `  a ) )
7877csbeq1d 3217 . . . . . . . . . . . . . 14  |-  ( j  =  a  ->  [_ (
g `  j )  /  k ]_ B  =  [_ ( g `  a )  /  k ]_ B )
7978cbvmptv 4260 . . . . . . . . . . . . 13  |-  ( j  e.  NN  |->  [_ (
g `  j )  /  k ]_ B
)  =  ( a  e.  NN  |->  [_ (
g `  a )  /  k ]_ B
)
80 simplr 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  NN  /\  w  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A ) )  -> 
( m  e.  NN  /\  w  e.  NN ) )
81 simprl 733 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  NN  /\  w  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A ) )  -> 
f : ( 1 ... m ) -1-1-onto-> A )
82 simprr 734 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  NN  /\  w  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A ) )  -> 
g : ( 1 ... w ) -1-1-onto-> A )
8316, 72, 76, 79, 80, 81, 82prodmolem3 25212 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
m  e.  NN  /\  w  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A ) )  -> 
(  seq  1 (  x.  ,  G ) `
 m )  =  (  seq  1 (  x.  ,  ( j  e.  NN  |->  [_ (
g `  j )  /  k ]_ B
) ) `  w
) )
84 eqeq12 2416 . . . . . . . . . . . 12  |-  ( ( x  =  (  seq  1 (  x.  ,  G ) `  m
)  /\  z  =  (  seq  1 (  x.  ,  ( j  e.  NN  |->  [_ ( g `  j )  /  k ]_ B ) ) `  w ) )  -> 
( x  =  z  <-> 
(  seq  1 (  x.  ,  G ) `
 m )  =  (  seq  1 (  x.  ,  ( j  e.  NN  |->  [_ (
g `  j )  /  k ]_ B
) ) `  w
) ) )
8583, 84syl5ibrcom 214 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  NN  /\  w  e.  NN )
)  /\  ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A ) )  -> 
( ( x  =  (  seq  1 (  x.  ,  G ) `
 m )  /\  z  =  (  seq  1 (  x.  , 
( j  e.  NN  |->  [_ ( g `  j
)  /  k ]_ B ) ) `  w ) )  ->  x  =  z )
)
8685expimpd 587 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  NN  /\  w  e.  NN ) )  -> 
( ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  g : ( 1 ... w
)
-1-1-onto-> A )  /\  (
x  =  (  seq  1 (  x.  ,  G ) `  m
)  /\  z  =  (  seq  1 (  x.  ,  ( j  e.  NN  |->  [_ ( g `  j )  /  k ]_ B ) ) `  w ) ) )  ->  x  =  z ) )
8770, 86syl5bi 209 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  NN  /\  w  e.  NN ) )  -> 
( ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `
 m ) )  /\  ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  ( j  e.  NN  |->  [_ ( g `  j )  /  k ]_ B ) ) `  w ) ) )  ->  x  =  z ) )
8887exlimdvv 1644 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  NN  /\  w  e.  NN ) )  -> 
( E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `
 m ) )  /\  ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  ( j  e.  NN  |->  [_ ( g `  j )  /  k ]_ B ) ) `  w ) ) )  ->  x  =  z ) )
8988rexlimdvva 2797 . . . . . . 7  |-  ( ph  ->  ( E. m  e.  NN  E. w  e.  NN  E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `
 m ) )  /\  ( g : ( 1 ... w
)
-1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  ( j  e.  NN  |->  [_ ( g `  j )  /  k ]_ B ) ) `  w ) ) )  ->  x  =  z ) )
9069, 89syl5bir 210 . . . . . 6  |-  ( ph  ->  ( ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m
) )  /\  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  m ) ) )  ->  x  =  z ) )
9190com12 29 . . . . 5  |-  ( ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m ) )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  m ) ) )  ->  ( ph  ->  x  =  z ) )
9235, 42, 45, 91ccase 913 . . . 4  |-  ( ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  F
)  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m
) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  F )  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  z )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  m ) ) ) )  ->  ( ph  ->  x  =  z ) )
9392com12 29 . . 3  |-  ( ph  ->  ( ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  F
)  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m
) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  F )  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  z )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  m ) ) ) )  ->  x  =  z ) )
9493alrimivv 1639 . 2  |-  ( ph  ->  A. x A. z
( ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  F
)  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m
) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  F )  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  z )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  m ) ) ) )  ->  x  =  z ) )
95 breq2 4176 . . . . . 6  |-  ( x  =  z  ->  (  seq  m (  x.  ,  F )  ~~>  x  <->  seq  m (  x.  ,  F )  ~~>  z ) )
96953anbi3d 1260 . . . . 5  |-  ( x  =  z  ->  (
( A  C_  ( ZZ>=
`  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  F )  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  x )  <->  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  F
)  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  z ) ) )
9796rexbidv 2687 . . . 4  |-  ( x  =  z  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  F )  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  x )  <->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  F
)  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  z ) ) )
98 eqeq1 2410 . . . . . . 7  |-  ( x  =  z  ->  (
x  =  (  seq  1 (  x.  ,  G ) `  m
)  <->  z  =  (  seq  1 (  x.  ,  G ) `  m ) ) )
9998anbi2d 685 . . . . . 6  |-  ( x  =  z  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m ) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `
 m ) ) ) )
10099exbidv 1633 . . . . 5  |-  ( x  =  z  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m ) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  m ) ) ) )
101100rexbidv 2687 . . . 4  |-  ( x  =  z  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m ) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  m
) ) ) )
10297, 101orbi12d 691 . . 3  |-  ( x  =  z  ->  (
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  F
)  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m
) ) )  <->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  F
)  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  z )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  m
) ) ) ) )
103102mo4 2287 . 2  |-  ( E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  F
)  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m
) ) )  <->  A. x A. z ( ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  F )  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  F
)  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  z )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq  1 (  x.  ,  G ) `  m
) ) ) )  ->  x  =  z ) )
10494, 103sylibr 204 1  |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  F
)  ~~>  y )  /\  seq  m (  x.  ,  F )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  G ) `  m
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1721   E*wmo 2255    =/= wne 2567   E.wrex 2667   [_csb 3211    C_ wss 3280   ifcif 3699   class class class wbr 4172    e. cmpt 4226   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6040   CCcc 8944   0cc0 8946   1c1 8947    x. cmul 8951   NNcn 9956   ZZcz 10238   ZZ>=cuz 10444   ...cfz 10999    seq cseq 11278    ~~> cli 12233
This theorem is referenced by:  fprod  25220
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237
  Copyright terms: Public domain W3C validator