Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodfrec Structured version   Unicode version

Theorem prodfrec 27544
Description: The reciprocal of an infinite product. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
prodfn0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
prodfn0.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  CC )
prodfn0.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =/=  0
)
prodfrec.4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  =  ( 1  /  ( F `
 k ) ) )
Assertion
Ref Expression
prodfrec  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 N )  =  ( 1  /  (  seq M (  x.  ,  F ) `  N
) ) )
Distinct variable groups:    k, F    ph, k    k, M    k, N    k, G

Proof of Theorem prodfrec
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfn0.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 11560 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 16 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 5789 . . . . 5  |-  ( m  =  M  ->  (  seq M (  x.  ,  G ) `  m
)  =  (  seq M (  x.  ,  G ) `  M
) )
5 fveq2 5789 . . . . . 6  |-  ( m  =  M  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  M
) )
65oveq2d 6206 . . . . 5  |-  ( m  =  M  ->  (
1  /  (  seq M (  x.  ,  F ) `  m
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  M
) ) )
74, 6eqeq12d 2473 . . . 4  |-  ( m  =  M  ->  (
(  seq M (  x.  ,  G ) `  m )  =  ( 1  /  (  seq M (  x.  ,  F ) `  m
) )  <->  (  seq M (  x.  ,  G ) `  M
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  M )
) ) )
87imbi2d 316 . . 3  |-  ( m  =  M  ->  (
( ph  ->  (  seq M (  x.  ,  G ) `  m
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  m )
) )  <->  ( ph  ->  (  seq M (  x.  ,  G ) `
 M )  =  ( 1  /  (  seq M (  x.  ,  F ) `  M
) ) ) ) )
9 fveq2 5789 . . . . 5  |-  ( m  =  n  ->  (  seq M (  x.  ,  G ) `  m
)  =  (  seq M (  x.  ,  G ) `  n
) )
10 fveq2 5789 . . . . . 6  |-  ( m  =  n  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  n
) )
1110oveq2d 6206 . . . . 5  |-  ( m  =  n  ->  (
1  /  (  seq M (  x.  ,  F ) `  m
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )
129, 11eqeq12d 2473 . . . 4  |-  ( m  =  n  ->  (
(  seq M (  x.  ,  G ) `  m )  =  ( 1  /  (  seq M (  x.  ,  F ) `  m
) )  <->  (  seq M (  x.  ,  G ) `  n
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  n )
) ) )
1312imbi2d 316 . . 3  |-  ( m  =  n  ->  (
( ph  ->  (  seq M (  x.  ,  G ) `  m
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  m )
) )  <->  ( ph  ->  (  seq M (  x.  ,  G ) `
 n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) ) ) )
14 fveq2 5789 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (  seq M (  x.  ,  G ) `  m
)  =  (  seq M (  x.  ,  G ) `  (
n  +  1 ) ) )
15 fveq2 5789 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) )
1615oveq2d 6206 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (
1  /  (  seq M (  x.  ,  F ) `  m
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) )
1714, 16eqeq12d 2473 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
(  seq M (  x.  ,  G ) `  m )  =  ( 1  /  (  seq M (  x.  ,  F ) `  m
) )  <->  (  seq M (  x.  ,  G ) `  (
n  +  1 ) )  =  ( 1  /  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) ) ) )
1817imbi2d 316 . . 3  |-  ( m  =  ( n  + 
1 )  ->  (
( ph  ->  (  seq M (  x.  ,  G ) `  m
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  m )
) )  <->  ( ph  ->  (  seq M (  x.  ,  G ) `
 ( n  + 
1 ) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
19 fveq2 5789 . . . . 5  |-  ( m  =  N  ->  (  seq M (  x.  ,  G ) `  m
)  =  (  seq M (  x.  ,  G ) `  N
) )
20 fveq2 5789 . . . . . 6  |-  ( m  =  N  ->  (  seq M (  x.  ,  F ) `  m
)  =  (  seq M (  x.  ,  F ) `  N
) )
2120oveq2d 6206 . . . . 5  |-  ( m  =  N  ->  (
1  /  (  seq M (  x.  ,  F ) `  m
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  N
) ) )
2219, 21eqeq12d 2473 . . . 4  |-  ( m  =  N  ->  (
(  seq M (  x.  ,  G ) `  m )  =  ( 1  /  (  seq M (  x.  ,  F ) `  m
) )  <->  (  seq M (  x.  ,  G ) `  N
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  N )
) ) )
2322imbi2d 316 . . 3  |-  ( m  =  N  ->  (
( ph  ->  (  seq M (  x.  ,  G ) `  m
)  =  ( 1  /  (  seq M
(  x.  ,  F
) `  m )
) )  <->  ( ph  ->  (  seq M (  x.  ,  G ) `
 N )  =  ( 1  /  (  seq M (  x.  ,  F ) `  N
) ) ) ) )
24 eluzfz1 11559 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
251, 24syl 16 . . . . . 6  |-  ( ph  ->  M  e.  ( M ... N ) )
26 fveq2 5789 . . . . . . . . 9  |-  ( k  =  M  ->  ( G `  k )  =  ( G `  M ) )
27 fveq2 5789 . . . . . . . . . 10  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2827oveq2d 6206 . . . . . . . . 9  |-  ( k  =  M  ->  (
1  /  ( F `
 k ) )  =  ( 1  / 
( F `  M
) ) )
2926, 28eqeq12d 2473 . . . . . . . 8  |-  ( k  =  M  ->  (
( G `  k
)  =  ( 1  /  ( F `  k ) )  <->  ( G `  M )  =  ( 1  /  ( F `
 M ) ) ) )
3029imbi2d 316 . . . . . . 7  |-  ( k  =  M  ->  (
( ph  ->  ( G `
 k )  =  ( 1  /  ( F `  k )
) )  <->  ( ph  ->  ( G `  M
)  =  ( 1  /  ( F `  M ) ) ) ) )
31 prodfrec.4 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  =  ( 1  /  ( F `
 k ) ) )
3231expcom 435 . . . . . . 7  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( G `  k )  =  ( 1  /  ( F `
 k ) ) ) )
3330, 32vtoclga 3132 . . . . . 6  |-  ( M  e.  ( M ... N )  ->  ( ph  ->  ( G `  M )  =  ( 1  /  ( F `
 M ) ) ) )
3425, 33mpcom 36 . . . . 5  |-  ( ph  ->  ( G `  M
)  =  ( 1  /  ( F `  M ) ) )
35 eluzel2 10967 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
361, 35syl 16 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
37 seq1 11920 . . . . . 6  |-  ( M  e.  ZZ  ->  (  seq M (  x.  ,  G ) `  M
)  =  ( G `
 M ) )
3836, 37syl 16 . . . . 5  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 M )  =  ( G `  M
) )
39 seq1 11920 . . . . . . 7  |-  ( M  e.  ZZ  ->  (  seq M (  x.  ,  F ) `  M
)  =  ( F `
 M ) )
4036, 39syl 16 . . . . . 6  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 M )  =  ( F `  M
) )
4140oveq2d 6206 . . . . 5  |-  ( ph  ->  ( 1  /  (  seq M (  x.  ,  F ) `  M
) )  =  ( 1  /  ( F `
 M ) ) )
4234, 38, 413eqtr4d 2502 . . . 4  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 M )  =  ( 1  /  (  seq M (  x.  ,  F ) `  M
) ) )
4342a1i 11 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M (  x.  ,  G ) `
 M )  =  ( 1  /  (  seq M (  x.  ,  F ) `  M
) ) ) )
44 oveq1 6197 . . . . . . . . 9  |-  ( (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) )  ->  (
(  seq M (  x.  ,  G ) `  n )  x.  ( G `  ( n  +  1 ) ) )  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  n
) )  x.  ( G `  ( n  +  1 ) ) ) )
45443ad2ant3 1011 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
( (  seq M
(  x.  ,  G
) `  n )  x.  ( G `  (
n  +  1 ) ) )  =  ( ( 1  /  (  seq M (  x.  ,  F ) `  n
) )  x.  ( G `  ( n  +  1 ) ) ) )
46 fzofzp1 11725 . . . . . . . . . . . . 13  |-  ( n  e.  ( M..^ N
)  ->  ( n  +  1 )  e.  ( M ... N
) )
47 fveq2 5789 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  ( G `  k )  =  ( G `  ( n  +  1
) ) )
48 fveq2 5789 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
4948oveq2d 6206 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  (
1  /  ( F `
 k ) )  =  ( 1  / 
( F `  (
n  +  1 ) ) ) )
5047, 49eqeq12d 2473 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  (
( G `  k
)  =  ( 1  /  ( F `  k ) )  <->  ( G `  ( n  +  1 ) )  =  ( 1  /  ( F `
 ( n  + 
1 ) ) ) ) )
5150imbi2d 316 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( G `
 k )  =  ( 1  /  ( F `  k )
) )  <->  ( ph  ->  ( G `  (
n  +  1 ) )  =  ( 1  /  ( F `  ( n  +  1
) ) ) ) ) )
5251, 32vtoclga 3132 . . . . . . . . . . . . 13  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( G `  ( n  +  1
) )  =  ( 1  /  ( F `
 ( n  + 
1 ) ) ) ) )
5346, 52syl 16 . . . . . . . . . . . 12  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( G `  (
n  +  1 ) )  =  ( 1  /  ( F `  ( n  +  1
) ) ) ) )
5453impcom 430 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( G `  ( n  +  1
) )  =  ( 1  /  ( F `
 ( n  + 
1 ) ) ) )
5554oveq2d 6206 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( G `
 ( n  + 
1 ) ) )  =  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( 1  /  ( F `  ( n  +  1
) ) ) ) )
56 ax-1cn 9441 . . . . . . . . . . . . 13  |-  1  e.  CC
5756a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  1  e.  CC )
58 elfzouz 11658 . . . . . . . . . . . . . 14  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( ZZ>= `  M )
)
5958adantl 466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  n  e.  (
ZZ>= `  M ) )
60 elfzouz2 11667 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( M..^ N
)  ->  N  e.  ( ZZ>= `  n )
)
61 fzss2 11599 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  n
)  ->  ( M ... n )  C_  ( M ... N ) )
6260, 61syl 16 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( M..^ N
)  ->  ( M ... n )  C_  ( M ... N ) )
6362sselda 3454 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( M..^ N )  /\  k  e.  ( M ... n
) )  ->  k  e.  ( M ... N
) )
64 prodfn0.2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  CC )
6563, 64sylan2 474 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( n  e.  ( M..^ N )  /\  k  e.  ( M ... n ) ) )  ->  ( F `  k )  e.  CC )
6665anassrs 648 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  k  e.  ( M ... n
) )  ->  ( F `  k )  e.  CC )
67 mulcl 9467 . . . . . . . . . . . . . 14  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  x.  x
)  e.  CC )
6867adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  ( k  e.  CC  /\  x  e.  CC ) )  -> 
( k  x.  x
)  e.  CC )
6959, 66, 68seqcl 11927 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  x.  ,  F
) `  n )  e.  CC )
7048eleq1d 2520 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  CC  <->  ( F `  ( n  +  1 ) )  e.  CC ) )
7170imbi2d 316 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( F `
 k )  e.  CC )  <->  ( ph  ->  ( F `  (
n  +  1 ) )  e.  CC ) ) )
7264expcom 435 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( F `  k )  e.  CC ) )
7371, 72vtoclga 3132 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( F `  ( n  +  1
) )  e.  CC ) )
7446, 73syl 16 . . . . . . . . . . . . 13  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( F `  (
n  +  1 ) )  e.  CC ) )
7574impcom 430 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) )  e.  CC )
76 prodfn0.3 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =/=  0
)
7763, 76sylan2 474 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( n  e.  ( M..^ N )  /\  k  e.  ( M ... n ) ) )  ->  ( F `  k )  =/=  0 )
7877anassrs 648 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  k  e.  ( M ... n
) )  ->  ( F `  k )  =/=  0 )
7959, 66, 78prodfn0 27543 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  x.  ,  F
) `  n )  =/=  0 )
8048neeq1d 2725 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  =/=  0  <->  ( F `  ( n  +  1 ) )  =/=  0 ) )
8180imbi2d 316 . . . . . . . . . . . . . . 15  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( F `
 k )  =/=  0 )  <->  ( ph  ->  ( F `  (
n  +  1 ) )  =/=  0 ) ) )
8276expcom 435 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( M ... N )  ->  ( ph  ->  ( F `  k )  =/=  0
) )
8381, 82vtoclga 3132 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( ph  ->  ( F `  ( n  +  1
) )  =/=  0
) )
8446, 83syl 16 . . . . . . . . . . . . 13  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( F `  (
n  +  1 ) )  =/=  0 ) )
8584impcom 430 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) )  =/=  0
)
8657, 69, 57, 75, 79, 85divmuldivd 10249 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( 1  /  ( F `  ( n  +  1
) ) ) )  =  ( ( 1  x.  1 )  / 
( (  seq M
(  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) ) ) )
87 1t1e1 10570 . . . . . . . . . . . 12  |-  ( 1  x.  1 )  =  1
8887oveq1i 6200 . . . . . . . . . . 11  |-  ( ( 1  x.  1 )  /  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) ) )
8986, 88syl6eq 2508 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( 1  /  ( F `  ( n  +  1
) ) ) )  =  ( 1  / 
( (  seq M
(  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) ) ) )
9055, 89eqtrd 2492 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( 1  /  (  seq M
(  x.  ,  F
) `  n )
)  x.  ( G `
 ( n  + 
1 ) ) )  =  ( 1  / 
( (  seq M
(  x.  ,  F
) `  n )  x.  ( F `  (
n  +  1 ) ) ) ) )
91903adant3 1008 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
( ( 1  / 
(  seq M (  x.  ,  F ) `  n ) )  x.  ( G `  (
n  +  1 ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
9245, 91eqtrd 2492 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
( (  seq M
(  x.  ,  G
) `  n )  x.  ( G `  (
n  +  1 ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
93 seqp1 11922 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  M
)  ->  (  seq M (  x.  ,  G ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  G ) `  n )  x.  ( G `  ( n  +  1 ) ) ) )
9458, 93syl 16 . . . . . . . 8  |-  ( n  e.  ( M..^ N
)  ->  (  seq M (  x.  ,  G ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  G ) `  n )  x.  ( G `  ( n  +  1 ) ) ) )
95943ad2ant2 1010 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( (  seq M (  x.  ,  G ) `
 n )  x.  ( G `  (
n  +  1 ) ) ) )
96 seqp1 11922 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  M
)  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) )
9758, 96syl 16 . . . . . . . . 9  |-  ( n  e.  ( M..^ N
)  ->  (  seq M (  x.  ,  F ) `  (
n  +  1 ) )  =  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) )
9897oveq2d 6206 . . . . . . . 8  |-  ( n  e.  ( M..^ N
)  ->  ( 1  /  (  seq M
(  x.  ,  F
) `  ( n  +  1 ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n
)  x.  ( F `
 ( n  + 
1 ) ) ) ) )
99983ad2ant2 1010 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) )  =  ( 1  /  ( (  seq M (  x.  ,  F ) `  n )  x.  ( F `  ( n  +  1 ) ) ) ) )
10092, 95, 993eqtr4d 2502 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M..^ N )  /\  (  seq M (  x.  ,  G ) `  n )  =  ( 1  /  (  seq M (  x.  ,  F ) `  n
) ) )  -> 
(  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) )
1011003exp 1187 . . . . 5  |-  ( ph  ->  ( n  e.  ( M..^ N )  -> 
( (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) )  -> 
(  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
102101com12 31 . . . 4  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) )  -> 
(  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
103102a2d 26 . . 3  |-  ( n  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  x.  ,  G
) `  n )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  n ) ) )  ->  ( ph  ->  (  seq M (  x.  ,  G ) `  ( n  +  1
) )  =  ( 1  /  (  seq M (  x.  ,  F ) `  (
n  +  1 ) ) ) ) ) )
1048, 13, 18, 23, 43, 103fzind2 11738 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  x.  ,  G
) `  N )  =  ( 1  / 
(  seq M (  x.  ,  F ) `  N ) ) ) )
1053, 104mpcom 36 1  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 N )  =  ( 1  /  (  seq M (  x.  ,  F ) `  N
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644    C_ wss 3426   ` cfv 5516  (class class class)co 6190   CCcc 9381   0cc0 9383   1c1 9384    + caddc 9386    x. cmul 9388    / cdiv 10094   ZZcz 10747   ZZ>=cuz 10962   ...cfz 11538  ..^cfzo 11649    seqcseq 11907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-er 7201  df-en 7411  df-dom 7412  df-sdom 7413  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-div 10095  df-nn 10424  df-n0 10681  df-z 10748  df-uz 10963  df-fz 11539  df-fzo 11650  df-seq 11908
This theorem is referenced by:  prodfdiv  27545
  Copyright terms: Public domain W3C validator