Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodeq2w Structured version   Unicode version

Theorem prodeq2w 28649
Description: Equality theorem for product, when the class expressions 
B and  C are equal everywhere. Proved using only Extensionality. (Contributed by Scott Fenton, 4-Dec-2017.)
Assertion
Ref Expression
prodeq2w  |-  ( A. k  B  =  C  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
Distinct variable group:    A, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem prodeq2w
Dummy variables  f  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . . . . . . . . . . . 12  |-  ZZ  =  ZZ
2 ifeq1 3943 . . . . . . . . . . . . . 14  |-  ( B  =  C  ->  if ( k  e.  A ,  B ,  1 )  =  if ( k  e.  A ,  C ,  1 ) )
32alimi 1614 . . . . . . . . . . . . 13  |-  ( A. k  B  =  C  ->  A. k if ( k  e.  A ,  B ,  1 )  =  if ( k  e.  A ,  C ,  1 ) )
4 alral 2829 . . . . . . . . . . . . 13  |-  ( A. k if ( k  e.  A ,  B , 
1 )  =  if ( k  e.  A ,  C ,  1 )  ->  A. k  e.  ZZ  if ( k  e.  A ,  B ,  1 )  =  if ( k  e.  A ,  C ,  1 ) )
53, 4syl 16 . . . . . . . . . . . 12  |-  ( A. k  B  =  C  ->  A. k  e.  ZZ  if ( k  e.  A ,  B ,  1 )  =  if ( k  e.  A ,  C ,  1 ) )
6 mpteq12 4526 . . . . . . . . . . . 12  |-  ( ( ZZ  =  ZZ  /\  A. k  e.  ZZ  if ( k  e.  A ,  B ,  1 )  =  if ( k  e.  A ,  C ,  1 ) )  ->  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )
71, 5, 6sylancr 663 . . . . . . . . . . 11  |-  ( A. k  B  =  C  ->  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )
87seqeq3d 12083 . . . . . . . . . 10  |-  ( A. k  B  =  C  ->  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  =  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) ) )
98breq1d 4457 . . . . . . . . 9  |-  ( A. k  B  =  C  ->  (  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y  <->  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) )
109anbi2d 703 . . . . . . . 8  |-  ( A. k  B  =  C  ->  ( ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <-> 
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
1110exbidv 1690 . . . . . . 7  |-  ( A. k  B  =  C  ->  ( E. y ( y  =/=  0  /\ 
seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
1211rexbidv 2973 . . . . . 6  |-  ( A. k  B  =  C  ->  ( E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  E. n  e.  ( ZZ>=
`  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
137seqeq3d 12083 . . . . . . 7  |-  ( A. k  B  =  C  ->  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  =  seq m
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) ) )
1413breq1d 4457 . . . . . 6  |-  ( A. k  B  =  C  ->  (  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x  <->  seq m
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )
1512, 143anbi23d 1302 . . . . 5  |-  ( A. k  B  =  C  ->  ( ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  <-> 
( A  C_  ( ZZ>=
`  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) )
1615rexbidv 2973 . . . 4  |-  ( A. k  B  =  C  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  <->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) )
17 fvex 5876 . . . . . . . . . . . 12  |-  ( f `
 n )  e. 
_V
18 nfcv 2629 . . . . . . . . . . . . 13  |-  F/_ k
( f `  n
)
19 nfcsb1v 3451 . . . . . . . . . . . . . 14  |-  F/_ k [_ ( f `  n
)  /  k ]_ B
20 nfcsb1v 3451 . . . . . . . . . . . . . 14  |-  F/_ k [_ ( f `  n
)  /  k ]_ C
2119, 20nfeq 2640 . . . . . . . . . . . . 13  |-  F/ k
[_ ( f `  n )  /  k ]_ B  =  [_ (
f `  n )  /  k ]_ C
22 csbeq1a 3444 . . . . . . . . . . . . . 14  |-  ( k  =  ( f `  n )  ->  B  =  [_ ( f `  n )  /  k ]_ B )
23 csbeq1a 3444 . . . . . . . . . . . . . 14  |-  ( k  =  ( f `  n )  ->  C  =  [_ ( f `  n )  /  k ]_ C )
2422, 23eqeq12d 2489 . . . . . . . . . . . . 13  |-  ( k  =  ( f `  n )  ->  ( B  =  C  <->  [_ ( f `
 n )  / 
k ]_ B  =  [_ ( f `  n
)  /  k ]_ C ) )
2518, 21, 24spcgf 3193 . . . . . . . . . . . 12  |-  ( ( f `  n )  e.  _V  ->  ( A. k  B  =  C  ->  [_ ( f `  n )  /  k ]_ B  =  [_ (
f `  n )  /  k ]_ C
) )
2617, 25ax-mp 5 . . . . . . . . . . 11  |-  ( A. k  B  =  C  ->  [_ ( f `  n )  /  k ]_ B  =  [_ (
f `  n )  /  k ]_ C
)
2726mpteq2dv 4534 . . . . . . . . . 10  |-  ( A. k  B  =  C  ->  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )  =  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) )
2827seqeq3d 12083 . . . . . . . . 9  |-  ( A. k  B  =  C  ->  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) )  =  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) )
2928fveq1d 5868 . . . . . . . 8  |-  ( A. k  B  =  C  ->  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
) ) `  m
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) )
3029eqeq2d 2481 . . . . . . 7  |-  ( A. k  B  =  C  ->  ( x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m )  <->  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) )
3130anbi2d 703 . . . . . 6  |-  ( A. k  B  =  C  ->  ( ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ C
) ) `  m
) ) ) )
3231exbidv 1690 . . . . 5  |-  ( A. k  B  =  C  ->  ( E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) ) )
3332rexbidv 2973 . . . 4  |-  ( A. k  B  =  C  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )
3416, 33orbi12d 709 . . 3  |-  ( A. k  B  =  C  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  <-> 
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) ) )
3534iotabidv 5572 . 2  |-  ( A. k  B  =  C  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )  =  ( iota
x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) ) )
36 df-prod 28643 . 2  |-  prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
37 df-prod 28643 . 2  |-  prod_ k  e.  A  C  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )
3835, 36, 373eqtr4g 2533 1  |-  ( A. k  B  =  C  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 973   A.wal 1377    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   _Vcvv 3113   [_csb 3435    C_ wss 3476   ifcif 3939   class class class wbr 4447    |-> cmpt 4505   iotacio 5549   -1-1-onto->wf1o 5587   ` cfv 5588  (class class class)co 6284   0cc0 9492   1c1 9493    x. cmul 9497   NNcn 10536   ZZcz 10864   ZZ>=cuz 11082   ...cfz 11672    seqcseq 12075    ~~> cli 13270   prod_cprod 28642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-nul 4576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-cnv 5007  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-recs 7042  df-rdg 7076  df-seq 12076  df-prod 28643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator