MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodeq2ii Structured version   Visualization version   Unicode version

Theorem prodeq2ii 13967
Description: Equality theorem for product, with the class expressions 
B and  C guarded by  _I to be always sets. (Contributed by Scott Fenton, 4-Dec-2017.)
Assertion
Ref Expression
prodeq2ii  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
Distinct variable group:    A, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem prodeq2ii
Dummy variables  f  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelz 11168 . . . . . . . . . . . . 13  |-  ( n  e.  ( ZZ>= `  m
)  ->  n  e.  ZZ )
21adantl 468 . . . . . . . . . . . 12  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  n  e.  ( ZZ>= `  m )
)  ->  n  e.  ZZ )
3 nfra1 2769 . . . . . . . . . . . . . . . . 17  |-  F/ k A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )
4 rsp 2754 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  ( k  e.  A  ->  (  _I 
`  B )  =  (  _I  `  C
) ) )
54adantr 467 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  k  e.  ZZ )  ->  (
k  e.  A  -> 
(  _I  `  B
)  =  (  _I 
`  C ) ) )
6 ifeq1 3885 . . . . . . . . . . . . . . . . . . . 20  |-  ( (  _I  `  B )  =  (  _I  `  C )  ->  if ( k  e.  A ,  (  _I  `  B
) ,  (  _I 
`  1 ) )  =  if ( k  e.  A ,  (  _I  `  C ) ,  (  _I  ` 
1 ) ) )
75, 6syl6 34 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  k  e.  ZZ )  ->  (
k  e.  A  ->  if ( k  e.  A ,  (  _I  `  B
) ,  (  _I 
`  1 ) )  =  if ( k  e.  A ,  (  _I  `  C ) ,  (  _I  ` 
1 ) ) ) )
8 iffalse 3890 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  (  _I  `  B
) ,  (  _I 
`  1 ) )  =  (  _I  ` 
1 ) )
9 iffalse 3890 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  (  _I  `  C
) ,  (  _I 
`  1 ) )  =  (  _I  ` 
1 ) )
108, 9eqtr4d 2488 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  (  _I  `  B
) ,  (  _I 
`  1 ) )  =  if ( k  e.  A ,  (  _I  `  C ) ,  (  _I  ` 
1 ) ) )
117, 10pm2.61d1 163 . . . . . . . . . . . . . . . . . 18  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  k  e.  ZZ )  ->  if ( k  e.  A ,  (  _I  `  B
) ,  (  _I 
`  1 ) )  =  if ( k  e.  A ,  (  _I  `  C ) ,  (  _I  ` 
1 ) ) )
12 fvif 5876 . . . . . . . . . . . . . . . . . 18  |-  (  _I 
`  if ( k  e.  A ,  B ,  1 ) )  =  if ( k  e.  A ,  (  _I  `  B ) ,  (  _I  ` 
1 ) )
13 fvif 5876 . . . . . . . . . . . . . . . . . 18  |-  (  _I 
`  if ( k  e.  A ,  C ,  1 ) )  =  if ( k  e.  A ,  (  _I  `  C ) ,  (  _I  ` 
1 ) )
1411, 12, 133eqtr4g 2510 . . . . . . . . . . . . . . . . 17  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  k  e.  ZZ )  ->  (  _I  `  if ( k  e.  A ,  B ,  1 ) )  =  (  _I  `  if ( k  e.  A ,  C ,  1 ) ) )
153, 14mpteq2da 4488 . . . . . . . . . . . . . . . 16  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  ( k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  B ,  1 ) ) )  =  ( k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  C ,  1 ) ) ) )
1615adantr 467 . . . . . . . . . . . . . . 15  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  x  e.  ( ZZ>= `  n )
)  ->  ( k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  B ,  1 ) ) )  =  ( k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  C ,  1 ) ) ) )
1716fveq1d 5867 . . . . . . . . . . . . . 14  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  x  e.  ( ZZ>= `  n )
)  ->  ( (
k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  B ,  1 ) ) ) `  x
)  =  ( ( k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  C ,  1 ) ) ) `  x
) )
1817adantlr 721 . . . . . . . . . . . . 13  |-  ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  n  e.  (
ZZ>= `  m ) )  /\  x  e.  (
ZZ>= `  n ) )  ->  ( ( k  e.  ZZ  |->  (  _I 
`  if ( k  e.  A ,  B ,  1 ) ) ) `  x )  =  ( ( k  e.  ZZ  |->  (  _I 
`  if ( k  e.  A ,  C ,  1 ) ) ) `  x ) )
19 eqid 2451 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
20 eqid 2451 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  |->  (  _I 
`  if ( k  e.  A ,  B ,  1 ) ) )  =  ( k  e.  ZZ  |->  (  _I 
`  if ( k  e.  A ,  B ,  1 ) ) )
2119, 20fvmptex 5960 . . . . . . . . . . . . 13  |-  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) `  x )  =  ( ( k  e.  ZZ  |->  (  _I 
`  if ( k  e.  A ,  B ,  1 ) ) ) `  x )
22 eqid 2451 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) )
23 eqid 2451 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  |->  (  _I 
`  if ( k  e.  A ,  C ,  1 ) ) )  =  ( k  e.  ZZ  |->  (  _I 
`  if ( k  e.  A ,  C ,  1 ) ) )
2422, 23fvmptex 5960 . . . . . . . . . . . . 13  |-  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) `  x )  =  ( ( k  e.  ZZ  |->  (  _I 
`  if ( k  e.  A ,  C ,  1 ) ) ) `  x )
2518, 21, 243eqtr4g 2510 . . . . . . . . . . . 12  |-  ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  n  e.  (
ZZ>= `  m ) )  /\  x  e.  (
ZZ>= `  n ) )  ->  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) `  x )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) `  x ) )
262, 25seqfeq 12238 . . . . . . . . . . 11  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  n  e.  ( ZZ>= `  m )
)  ->  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  =  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) ) )
2726breq1d 4412 . . . . . . . . . 10  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  n  e.  ( ZZ>= `  m )
)  ->  (  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y  <->  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) )
2827anbi2d 710 . . . . . . . . 9  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  n  e.  ( ZZ>= `  m )
)  ->  ( (
y  =/=  0  /\ 
seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
2928exbidv 1768 . . . . . . . 8  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  n  e.  ( ZZ>= `  m )
)  ->  ( E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
3029rexbidva 2898 . . . . . . 7  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  ( E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
3130adantr 467 . . . . . 6  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  ZZ )  ->  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  E. n  e.  ( ZZ>=
`  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) ) )
32 simpr 463 . . . . . . . 8  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  ZZ )  ->  m  e.  ZZ )
3315adantr 467 . . . . . . . . . . 11  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  x  e.  ( ZZ>= `  m )
)  ->  ( k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  B ,  1 ) ) )  =  ( k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  C ,  1 ) ) ) )
3433fveq1d 5867 . . . . . . . . . 10  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  x  e.  ( ZZ>= `  m )
)  ->  ( (
k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  B ,  1 ) ) ) `  x
)  =  ( ( k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  C ,  1 ) ) ) `  x
) )
3534, 21, 243eqtr4g 2510 . . . . . . . . 9  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  x  e.  ( ZZ>= `  m )
)  ->  ( (
k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) `  x )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) `  x ) )
3635adantlr 721 . . . . . . . 8  |-  ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  ZZ )  /\  x  e.  (
ZZ>= `  m ) )  ->  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) `  x )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) `  x ) )
3732, 36seqfeq 12238 . . . . . . 7  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  ZZ )  ->  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  =  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) ) )
3837breq1d 4412 . . . . . 6  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  ZZ )  ->  (  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x  <->  seq m
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )
3931, 383anbi23d 1342 . . . . 5  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  ZZ )  ->  (
( A  C_  ( ZZ>=
`  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  <-> 
( A  C_  ( ZZ>=
`  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) )
4039rexbidva 2898 . . . 4  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  <->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) )
41 simplr 762 . . . . . . . . . 10  |-  ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  m  e.  NN )
42 nnuz 11194 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
4341, 42syl6eleq 2539 . . . . . . . . 9  |-  ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  m  e.  ( ZZ>= `  1 )
)
44 f1of 5814 . . . . . . . . . . . . . 14  |-  ( f : ( 1 ... m ) -1-1-onto-> A  ->  f :
( 1 ... m
) --> A )
4544ad2antlr 733 . . . . . . . . . . . . 13  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  f : ( 1 ... m ) --> A )
46 ffvelrn 6020 . . . . . . . . . . . . 13  |-  ( ( f : ( 1 ... m ) --> A  /\  x  e.  ( 1 ... m ) )  ->  ( f `  x )  e.  A
)
4745, 46sylancom 673 . . . . . . . . . . . 12  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  (
f `  x )  e.  A )
48 simplll 768 . . . . . . . . . . . 12  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  A. k  e.  A  (  _I  `  B )  =  (  _I  `  C ) )
49 nfcsb1v 3379 . . . . . . . . . . . . . 14  |-  F/_ k [_ ( f `  x
)  /  k ]_ (  _I  `  B )
50 nfcsb1v 3379 . . . . . . . . . . . . . 14  |-  F/_ k [_ ( f `  x
)  /  k ]_ (  _I  `  C )
5149, 50nfeq 2603 . . . . . . . . . . . . 13  |-  F/ k
[_ ( f `  x )  /  k ]_ (  _I  `  B
)  =  [_ (
f `  x )  /  k ]_ (  _I  `  C )
52 csbeq1a 3372 . . . . . . . . . . . . . 14  |-  ( k  =  ( f `  x )  ->  (  _I  `  B )  = 
[_ ( f `  x )  /  k ]_ (  _I  `  B
) )
53 csbeq1a 3372 . . . . . . . . . . . . . 14  |-  ( k  =  ( f `  x )  ->  (  _I  `  C )  = 
[_ ( f `  x )  /  k ]_ (  _I  `  C
) )
5452, 53eqeq12d 2466 . . . . . . . . . . . . 13  |-  ( k  =  ( f `  x )  ->  (
(  _I  `  B
)  =  (  _I 
`  C )  <->  [_ ( f `
 x )  / 
k ]_ (  _I  `  B )  =  [_ ( f `  x
)  /  k ]_ (  _I  `  C ) ) )
5551, 54rspc 3144 . . . . . . . . . . . 12  |-  ( ( f `  x )  e.  A  ->  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  ->  [_ (
f `  x )  /  k ]_ (  _I  `  B )  = 
[_ ( f `  x )  /  k ]_ (  _I  `  C
) ) )
5647, 48, 55sylc 62 . . . . . . . . . . 11  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  [_ (
f `  x )  /  k ]_ (  _I  `  B )  = 
[_ ( f `  x )  /  k ]_ (  _I  `  C
) )
57 fvex 5875 . . . . . . . . . . . 12  |-  ( f `
 x )  e. 
_V
58 csbfv2g 5901 . . . . . . . . . . . 12  |-  ( ( f `  x )  e.  _V  ->  [_ (
f `  x )  /  k ]_ (  _I  `  B )  =  (  _I  `  [_ (
f `  x )  /  k ]_ B
) )
5957, 58ax-mp 5 . . . . . . . . . . 11  |-  [_ (
f `  x )  /  k ]_ (  _I  `  B )  =  (  _I  `  [_ (
f `  x )  /  k ]_ B
)
60 csbfv2g 5901 . . . . . . . . . . . 12  |-  ( ( f `  x )  e.  _V  ->  [_ (
f `  x )  /  k ]_ (  _I  `  C )  =  (  _I  `  [_ (
f `  x )  /  k ]_ C
) )
6157, 60ax-mp 5 . . . . . . . . . . 11  |-  [_ (
f `  x )  /  k ]_ (  _I  `  C )  =  (  _I  `  [_ (
f `  x )  /  k ]_ C
)
6256, 59, 613eqtr3g 2508 . . . . . . . . . 10  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  (  _I  `  [_ ( f `
 x )  / 
k ]_ B )  =  (  _I  `  [_ (
f `  x )  /  k ]_ C
) )
63 elfznn 11828 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 ... m )  ->  x  e.  NN )
6463adantl 468 . . . . . . . . . . 11  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  x  e.  NN )
65 fveq2 5865 . . . . . . . . . . . . 13  |-  ( n  =  x  ->  (
f `  n )  =  ( f `  x ) )
6665csbeq1d 3370 . . . . . . . . . . . 12  |-  ( n  =  x  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  x )  /  k ]_ B )
67 eqid 2451 . . . . . . . . . . . 12  |-  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
)  =  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
)
6866, 67fvmpti 5947 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  (
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) `  x
)  =  (  _I 
`  [_ ( f `  x )  /  k ]_ B ) )
6964, 68syl 17 . . . . . . . . . 10  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  (
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) `  x
)  =  (  _I 
`  [_ ( f `  x )  /  k ]_ B ) )
7065csbeq1d 3370 . . . . . . . . . . . 12  |-  ( n  =  x  ->  [_ (
f `  n )  /  k ]_ C  =  [_ ( f `  x )  /  k ]_ C )
71 eqid 2451 . . . . . . . . . . . 12  |-  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ C
)  =  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ C
)
7270, 71fvmpti 5947 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  (
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) `  x
)  =  (  _I 
`  [_ ( f `  x )  /  k ]_ C ) )
7364, 72syl 17 . . . . . . . . . 10  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  (
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) `  x
)  =  (  _I 
`  [_ ( f `  x )  /  k ]_ C ) )
7462, 69, 733eqtr4d 2495 . . . . . . . . 9  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  (
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) `  x
)  =  ( ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) `  x
) )
7543, 74seqfveq 12237 . . . . . . . 8  |-  ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) )
7675eqeq2d 2461 . . . . . . 7  |-  ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( x  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m )  <->  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) )
7776pm5.32da 647 . . . . . 6  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ C
) ) `  m
) ) ) )
7877exbidv 1768 . . . . 5  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) ) )
7978rexbidva 2898 . . . 4  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )
8040, 79orbi12d 716 . . 3  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  <-> 
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) ) )
8180iotabidv 5567 . 2  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )  =  ( iota
x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) ) )
82 df-prod 13960 . 2  |-  prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
83 df-prod 13960 . 2  |-  prod_ k  e.  A  C  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )
8481, 82, 833eqtr4g 2510 1  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    /\ w3a 985    = wceq 1444   E.wex 1663    e. wcel 1887    =/= wne 2622   A.wral 2737   E.wrex 2738   _Vcvv 3045   [_csb 3363    C_ wss 3404   ifcif 3881   class class class wbr 4402    |-> cmpt 4461    _I cid 4744   iotacio 5544   -->wf 5578   -1-1-onto->wf1o 5581   ` cfv 5582  (class class class)co 6290   0cc0 9539   1c1 9540    x. cmul 9544   NNcn 10609   ZZcz 10937   ZZ>=cuz 11159   ...cfz 11784    seqcseq 12213    ~~> cli 13548   prod_cprod 13959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-er 7363  df-en 7570  df-dom 7571  df-sdom 7572  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11785  df-seq 12214  df-prod 13960
This theorem is referenced by:  prodeq2  13968  prod2id  13982
  Copyright terms: Public domain W3C validator