MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnmax Structured version   Unicode version

Theorem prnmax 9274
Description: A positive real has no largest member. Definition 9-3.1(iii) of [Gleason] p. 121. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prnmax  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  E. x  e.  A  B  <Q  x )
Distinct variable groups:    x, A    x, B

Proof of Theorem prnmax
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq1 2526 . . . . 5  |-  ( y  =  B  ->  (
y  e.  A  <->  B  e.  A ) )
21anbi2d 703 . . . 4  |-  ( y  =  B  ->  (
( A  e.  P.  /\  y  e.  A )  <-> 
( A  e.  P.  /\  B  e.  A ) ) )
3 breq1 4402 . . . . 5  |-  ( y  =  B  ->  (
y  <Q  x  <->  B  <Q  x ) )
43rexbidv 2864 . . . 4  |-  ( y  =  B  ->  ( E. x  e.  A  y  <Q  x  <->  E. x  e.  A  B  <Q  x ) )
52, 4imbi12d 320 . . 3  |-  ( y  =  B  ->  (
( ( A  e. 
P.  /\  y  e.  A )  ->  E. x  e.  A  y  <Q  x )  <->  ( ( A  e.  P.  /\  B  e.  A )  ->  E. x  e.  A  B  <Q  x ) ) )
6 elnpi 9267 . . . . . 6  |-  ( A  e.  P.  <->  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. y  e.  A  ( A. x ( x 
<Q  y  ->  x  e.  A )  /\  E. x  e.  A  y  <Q  x ) ) )
76simprbi 464 . . . . 5  |-  ( A  e.  P.  ->  A. y  e.  A  ( A. x ( x  <Q  y  ->  x  e.  A
)  /\  E. x  e.  A  y  <Q  x ) )
87r19.21bi 2918 . . . 4  |-  ( ( A  e.  P.  /\  y  e.  A )  ->  ( A. x ( x  <Q  y  ->  x  e.  A )  /\  E. x  e.  A  y 
<Q  x ) )
98simprd 463 . . 3  |-  ( ( A  e.  P.  /\  y  e.  A )  ->  E. x  e.  A  y  <Q  x )
105, 9vtoclg 3134 . 2  |-  ( B  e.  A  ->  (
( A  e.  P.  /\  B  e.  A )  ->  E. x  e.  A  B  <Q  x ) )
1110anabsi7 815 1  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  E. x  e.  A  B  <Q  x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965   A.wal 1368    = wceq 1370    e. wcel 1758   A.wral 2798   E.wrex 2799   _Vcvv 3076    C. wpss 3436   (/)c0 3744   class class class wbr 4399   Q.cnq 9129    <Q cltq 9135   P.cnp 9136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-rab 2807  df-v 3078  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-sn 3985  df-pr 3987  df-op 3991  df-br 4400  df-np 9260
This theorem is referenced by:  npomex  9275  prnmadd  9276  genpnmax  9286  1idpr  9308  ltexprlem4  9318  reclem3pr  9328  suplem1pr  9331
  Copyright terms: Public domain W3C validator