MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnmadd Structured version   Unicode version

Theorem prnmadd 9162
Description: A positive real has no largest member. Addition version. (Contributed by NM, 7-Apr-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prnmadd  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  E. x ( B  +Q  x )  e.  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem prnmadd
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 prnmax 9160 . 2  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  E. y  e.  A  B  <Q  y )
2 ltrelnq 9091 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4883 . . . . . 6  |-  ( B 
<Q  y  ->  ( B  e.  Q.  /\  y  e.  Q. ) )
43simprd 460 . . . . 5  |-  ( B 
<Q  y  ->  y  e. 
Q. )
5 ltexnq 9140 . . . . . 6  |-  ( y  e.  Q.  ->  ( B  <Q  y  <->  E. x
( B  +Q  x
)  =  y ) )
65biimpcd 224 . . . . 5  |-  ( B 
<Q  y  ->  ( y  e.  Q.  ->  E. x
( B  +Q  x
)  =  y ) )
74, 6mpd 15 . . . 4  |-  ( B 
<Q  y  ->  E. x
( B  +Q  x
)  =  y )
8 eleq1a 2510 . . . . 5  |-  ( y  e.  A  ->  (
( B  +Q  x
)  =  y  -> 
( B  +Q  x
)  e.  A ) )
98eximdv 1681 . . . 4  |-  ( y  e.  A  ->  ( E. x ( B  +Q  x )  =  y  ->  E. x ( B  +Q  x )  e.  A ) )
107, 9syl5 32 . . 3  |-  ( y  e.  A  ->  ( B  <Q  y  ->  E. x
( B  +Q  x
)  e.  A ) )
1110rexlimiv 2833 . 2  |-  ( E. y  e.  A  B  <Q  y  ->  E. x
( B  +Q  x
)  e.  A )
121, 11syl 16 1  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  E. x ( B  +Q  x )  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364   E.wex 1591    e. wcel 1761   E.wrex 2714   class class class wbr 4289  (class class class)co 6090   Q.cnq 9015    +Q cplq 9018    <Q cltq 9021   P.cnp 9022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-omul 6921  df-er 7097  df-ni 9037  df-pli 9038  df-mi 9039  df-lti 9040  df-plpq 9073  df-mpq 9074  df-ltpq 9075  df-enq 9076  df-nq 9077  df-erq 9078  df-plq 9079  df-mq 9080  df-1nq 9081  df-ltnq 9083  df-np 9146
This theorem is referenced by:  ltexprlem1  9201  ltexprlem7  9207
  Copyright terms: Public domain W3C validator