MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmunb Structured version   Unicode version

Theorem prmunb 14308
Description: The primes are unbounded. (Contributed by Paul Chapman, 28-Nov-2012.)
Assertion
Ref Expression
prmunb  |-  ( N  e.  NN  ->  E. p  e.  Prime  N  <  p
)
Distinct variable group:    N, p

Proof of Theorem prmunb
StepHypRef Expression
1 nnnn0 10814 . 2  |-  ( N  e.  NN  ->  N  e.  NN0 )
2 faccl 12343 . . . 4  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
3 elnnuz 11130 . . . . 5  |-  ( ( ! `  N )  e.  NN  <->  ( ! `  N )  e.  (
ZZ>= `  1 ) )
4 eluzp1p1 11119 . . . . . 6  |-  ( ( ! `  N )  e.  ( ZZ>= `  1
)  ->  ( ( ! `  N )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
5 df-2 10606 . . . . . . 7  |-  2  =  ( 1  +  1 )
65fveq2i 5875 . . . . . 6  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
74, 6syl6eleqr 2566 . . . . 5  |-  ( ( ! `  N )  e.  ( ZZ>= `  1
)  ->  ( ( ! `  N )  +  1 )  e.  ( ZZ>= `  2 )
)
83, 7sylbi 195 . . . 4  |-  ( ( ! `  N )  e.  NN  ->  (
( ! `  N
)  +  1 )  e.  ( ZZ>= `  2
) )
9 exprmfct 14127 . . . 4  |-  ( ( ( ! `  N
)  +  1 )  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  (
( ! `  N
)  +  1 ) )
102, 8, 93syl 20 . . 3  |-  ( N  e.  NN0  ->  E. p  e.  Prime  p  ||  (
( ! `  N
)  +  1 ) )
11 prmz 14097 . . . . . . . . 9  |-  ( p  e.  Prime  ->  p  e.  ZZ )
12 nn0z 10899 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  ZZ )
13 eluz 11107 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  p )  <->  p  <_  N ) )
1411, 12, 13syl2an 477 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  N  e.  NN0 )  ->  ( N  e.  ( ZZ>= `  p )  <->  p  <_  N ) )
15 prmuz2 14111 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
16 eluz2b2 11166 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
1715, 16sylib 196 . . . . . . . . . . . . . . . 16  |-  ( p  e.  Prime  ->  ( p  e.  NN  /\  1  <  p ) )
1817adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  ( p  e.  NN  /\  1  < 
p ) )
1918simpld 459 . . . . . . . . . . . . . 14  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  p  e.  NN )
2019nnnn0d 10864 . . . . . . . . . . . . 13  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  p  e.  NN0 )
21 eluznn0 11163 . . . . . . . . . . . . 13  |-  ( ( p  e.  NN0  /\  N  e.  ( ZZ>= `  p ) )  ->  N  e.  NN0 )
2220, 21sylancom 667 . . . . . . . . . . . 12  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  N  e.  NN0 )
23 nnz 10898 . . . . . . . . . . . 12  |-  ( ( ! `  N )  e.  NN  ->  ( ! `  N )  e.  ZZ )
2422, 2, 233syl 20 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  ( ! `  N )  e.  ZZ )
2518simprd 463 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  1  <  p )
26 dvdsfac 13917 . . . . . . . . . . . 12  |-  ( ( p  e.  NN  /\  N  e.  ( ZZ>= `  p ) )  ->  p  ||  ( ! `  N ) )
2719, 26sylancom 667 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  p  ||  ( ! `  N )
)
28 ndvdsp1 13943 . . . . . . . . . . . 12  |-  ( ( ( ! `  N
)  e.  ZZ  /\  p  e.  NN  /\  1  <  p )  ->  (
p  ||  ( ! `  N )  ->  -.  p  ||  ( ( ! `
 N )  +  1 ) ) )
2928imp 429 . . . . . . . . . . 11  |-  ( ( ( ( ! `  N )  e.  ZZ  /\  p  e.  NN  /\  1  <  p )  /\  p  ||  ( ! `  N ) )  ->  -.  p  ||  ( ( ! `  N )  +  1 ) )
3024, 19, 25, 27, 29syl31anc 1231 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  N  e.  ( ZZ>= `  p )
)  ->  -.  p  ||  ( ( ! `  N )  +  1 ) )
3130ex 434 . . . . . . . . 9  |-  ( p  e.  Prime  ->  ( N  e.  ( ZZ>= `  p
)  ->  -.  p  ||  ( ( ! `  N )  +  1 ) ) )
3231adantr 465 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  N  e.  NN0 )  ->  ( N  e.  ( ZZ>= `  p )  ->  -.  p  ||  ( ( ! `
 N )  +  1 ) ) )
3314, 32sylbird 235 . . . . . . 7  |-  ( ( p  e.  Prime  /\  N  e.  NN0 )  ->  (
p  <_  N  ->  -.  p  ||  ( ( ! `  N )  +  1 ) ) )
3433con2d 115 . . . . . 6  |-  ( ( p  e.  Prime  /\  N  e.  NN0 )  ->  (
p  ||  ( ( ! `  N )  +  1 )  ->  -.  p  <_  N ) )
3534ancoms 453 . . . . 5  |-  ( ( N  e.  NN0  /\  p  e.  Prime )  -> 
( p  ||  (
( ! `  N
)  +  1 )  ->  -.  p  <_  N ) )
36 nn0re 10816 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  RR )
3711zred 10978 . . . . . 6  |-  ( p  e.  Prime  ->  p  e.  RR )
38 ltnle 9676 . . . . . 6  |-  ( ( N  e.  RR  /\  p  e.  RR )  ->  ( N  <  p  <->  -.  p  <_  N )
)
3936, 37, 38syl2an 477 . . . . 5  |-  ( ( N  e.  NN0  /\  p  e.  Prime )  -> 
( N  <  p  <->  -.  p  <_  N )
)
4035, 39sylibrd 234 . . . 4  |-  ( ( N  e.  NN0  /\  p  e.  Prime )  -> 
( p  ||  (
( ! `  N
)  +  1 )  ->  N  <  p
) )
4140reximdva 2942 . . 3  |-  ( N  e.  NN0  ->  ( E. p  e.  Prime  p  ||  ( ( ! `  N )  +  1 )  ->  E. p  e.  Prime  N  <  p
) )
4210, 41mpd 15 . 2  |-  ( N  e.  NN0  ->  E. p  e.  Prime  N  <  p
)
431, 42syl 16 1  |-  ( N  e.  NN  ->  E. p  e.  Prime  N  <  p
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    e. wcel 1767   E.wrex 2818   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   RRcr 9503   1c1 9505    + caddc 9507    < clt 9640    <_ cle 9641   NNcn 10548   2c2 10597   NN0cn0 10807   ZZcz 10876   ZZ>=cuz 11094   !cfa 12333    || cdivides 13864   Primecprime 14093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-fz 11685  df-seq 12088  df-exp 12147  df-fac 12334  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-dvds 13865  df-prm 14094
This theorem is referenced by:  prminf  14309  nn0prpw  30068  prmunb2  31118
  Copyright terms: Public domain W3C validator