MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmrp Structured version   Unicode version

Theorem prmrp 14118
Description: Unequal prime numbers are relatively prime. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
prmrp  |-  ( ( P  e.  Prime  /\  Q  e.  Prime )  ->  (
( P  gcd  Q
)  =  1  <->  P  =/=  Q ) )

Proof of Theorem prmrp
StepHypRef Expression
1 prmz 14097 . . 3  |-  ( Q  e.  Prime  ->  Q  e.  ZZ )
2 coprm 14117 . . 3  |-  ( ( P  e.  Prime  /\  Q  e.  ZZ )  ->  ( -.  P  ||  Q  <->  ( P  gcd  Q )  =  1 ) )
31, 2sylan2 474 . 2  |-  ( ( P  e.  Prime  /\  Q  e.  Prime )  ->  ( -.  P  ||  Q  <->  ( P  gcd  Q )  =  1 ) )
4 prmuz2 14111 . . . 4  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
5 dvdsprm 14116 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  Q  e.  Prime )  ->  ( P  ||  Q  <->  P  =  Q ) )
64, 5sylan 471 . . 3  |-  ( ( P  e.  Prime  /\  Q  e.  Prime )  ->  ( P  ||  Q  <->  P  =  Q ) )
76necon3bbid 2714 . 2  |-  ( ( P  e.  Prime  /\  Q  e.  Prime )  ->  ( -.  P  ||  Q  <->  P  =/=  Q ) )
83, 7bitr3d 255 1  |-  ( ( P  e.  Prime  /\  Q  e.  Prime )  ->  (
( P  gcd  Q
)  =  1  <->  P  =/=  Q ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   1c1 9505   2c2 10597   ZZcz 10876   ZZ>=cuz 11094    || cdivides 13864    gcd cgcd 14020   Primecprime 14093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-seq 12088  df-exp 12147  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-dvds 13865  df-gcd 14021  df-prm 14094
This theorem is referenced by:  ablfac1b  16993  lgseisenlem1  23490  lgseisenlem2  23491  lgsquadlem2  23496  lgsquadlem3  23497  lgsquad2lem2  23500  lgsquad2  23501  ostth3  23689  3lcm2e6  31143  nzprmdif  31148
  Copyright terms: Public domain W3C validator