MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem3 Structured version   Unicode version

Theorem prmreclem3 14448
Description: Lemma for prmrec 14452. The main inequality established here is  # M  <_  # { x  e.  M  |  ( Q `  x )  =  1 }  x.  sqr N, where  { x  e.  M  |  ( Q `
 x )  =  1 } is the set of squarefree numbers in  M. This is demonstrated by the map  y  |->  <. y  /  ( Q `  y ) ^ 2 ,  ( Q `  y ) >. where  Q `  y is the largest number whose square divides  y. (Contributed by Mario Carneiro, 5-Aug-2014.)
Hypotheses
Ref Expression
prmrec.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( 1  /  n
) ,  0 ) )
prmrec.2  |-  ( ph  ->  K  e.  NN )
prmrec.3  |-  ( ph  ->  N  e.  NN )
prmrec.4  |-  M  =  { n  e.  ( 1 ... N )  |  A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  n }
prmreclem2.5  |-  Q  =  ( n  e.  NN  |->  sup ( { r  e.  NN  |  ( r ^ 2 )  ||  n } ,  RR ,  <  ) )
Assertion
Ref Expression
prmreclem3  |-  ( ph  ->  ( # `  M
)  <_  ( (
2 ^ K )  x.  ( sqr `  N
) ) )
Distinct variable groups:    n, p, r, F    n, K, p   
n, M, p    ph, n, p    Q, n, p, r   
n, N, p
Allowed substitution hints:    ph( r)    K( r)    M( r)    N( r)

Proof of Theorem prmreclem3
Dummy variables  x  y  z  A are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 12085 . . . . . 6  |-  ( 1 ... N )  e. 
Fin
2 prmrec.4 . . . . . . 7  |-  M  =  { n  e.  ( 1 ... N )  |  A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  n }
3 ssrab2 3581 . . . . . . 7  |-  { n  e.  ( 1 ... N
)  |  A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  n }  C_  ( 1 ... N )
42, 3eqsstri 3529 . . . . . 6  |-  M  C_  ( 1 ... N
)
5 ssfi 7759 . . . . . 6  |-  ( ( ( 1 ... N
)  e.  Fin  /\  M  C_  ( 1 ... N ) )  ->  M  e.  Fin )
61, 4, 5mp2an 672 . . . . 5  |-  M  e. 
Fin
7 hashcl 12431 . . . . 5  |-  ( M  e.  Fin  ->  ( # `
 M )  e. 
NN0 )
86, 7ax-mp 5 . . . 4  |-  ( # `  M )  e.  NN0
98nn0rei 10827 . . 3  |-  ( # `  M )  e.  RR
109a1i 11 . 2  |-  ( ph  ->  ( # `  M
)  e.  RR )
11 2nn 10714 . . . . . 6  |-  2  e.  NN
12 prmrec.2 . . . . . . 7  |-  ( ph  ->  K  e.  NN )
1312nnnn0d 10873 . . . . . 6  |-  ( ph  ->  K  e.  NN0 )
14 nnexpcl 12182 . . . . . 6  |-  ( ( 2  e.  NN  /\  K  e.  NN0 )  -> 
( 2 ^ K
)  e.  NN )
1511, 13, 14sylancr 663 . . . . 5  |-  ( ph  ->  ( 2 ^ K
)  e.  NN )
1615nnnn0d 10873 . . . 4  |-  ( ph  ->  ( 2 ^ K
)  e.  NN0 )
17 prmrec.3 . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
1817nnrpd 11280 . . . . . . 7  |-  ( ph  ->  N  e.  RR+ )
1918rpsqrtcld 13255 . . . . . 6  |-  ( ph  ->  ( sqr `  N
)  e.  RR+ )
2019rprege0d 11288 . . . . 5  |-  ( ph  ->  ( ( sqr `  N
)  e.  RR  /\  0  <_  ( sqr `  N
) ) )
21 flge0nn0 11957 . . . . 5  |-  ( ( ( sqr `  N
)  e.  RR  /\  0  <_  ( sqr `  N
) )  ->  ( |_ `  ( sqr `  N
) )  e.  NN0 )
2220, 21syl 16 . . . 4  |-  ( ph  ->  ( |_ `  ( sqr `  N ) )  e.  NN0 )
2316, 22nn0mulcld 10878 . . 3  |-  ( ph  ->  ( ( 2 ^ K )  x.  ( |_ `  ( sqr `  N
) ) )  e. 
NN0 )
2423nn0red 10874 . 2  |-  ( ph  ->  ( ( 2 ^ K )  x.  ( |_ `  ( sqr `  N
) ) )  e.  RR )
2515nnred 10571 . . 3  |-  ( ph  ->  ( 2 ^ K
)  e.  RR )
2619rpred 11281 . . 3  |-  ( ph  ->  ( sqr `  N
)  e.  RR )
2725, 26remulcld 9641 . 2  |-  ( ph  ->  ( ( 2 ^ K )  x.  ( sqr `  N ) )  e.  RR )
28 ssrab2 3581 . . . . . . 7  |-  { x  e.  M  |  ( Q `  x )  =  1 }  C_  M
29 ssfi 7759 . . . . . . 7  |-  ( ( M  e.  Fin  /\  { x  e.  M  | 
( Q `  x
)  =  1 } 
C_  M )  ->  { x  e.  M  |  ( Q `  x )  =  1 }  e.  Fin )
306, 28, 29mp2an 672 . . . . . 6  |-  { x  e.  M  |  ( Q `  x )  =  1 }  e.  Fin
31 hashcl 12431 . . . . . 6  |-  ( { x  e.  M  | 
( Q `  x
)  =  1 }  e.  Fin  ->  ( # `
 { x  e.  M  |  ( Q `
 x )  =  1 } )  e. 
NN0 )
3230, 31ax-mp 5 . . . . 5  |-  ( # `  { x  e.  M  |  ( Q `  x )  =  1 } )  e.  NN0
3332nn0rei 10827 . . . 4  |-  ( # `  { x  e.  M  |  ( Q `  x )  =  1 } )  e.  RR
3422nn0red 10874 . . . 4  |-  ( ph  ->  ( |_ `  ( sqr `  N ) )  e.  RR )
35 remulcl 9594 . . . 4  |-  ( ( ( # `  {
x  e.  M  | 
( Q `  x
)  =  1 } )  e.  RR  /\  ( |_ `  ( sqr `  N ) )  e.  RR )  ->  (
( # `  { x  e.  M  |  ( Q `  x )  =  1 } )  x.  ( |_ `  ( sqr `  N ) ) )  e.  RR )
3633, 34, 35sylancr 663 . . 3  |-  ( ph  ->  ( ( # `  {
x  e.  M  | 
( Q `  x
)  =  1 } )  x.  ( |_
`  ( sqr `  N
) ) )  e.  RR )
37 fzfi 12085 . . . . . . 7  |-  ( 1 ... ( |_ `  ( sqr `  N ) ) )  e.  Fin
38 xpfi 7809 . . . . . . 7  |-  ( ( { x  e.  M  |  ( Q `  x )  =  1 }  e.  Fin  /\  ( 1 ... ( |_ `  ( sqr `  N
) ) )  e. 
Fin )  ->  ( { x  e.  M  |  ( Q `  x )  =  1 }  X.  ( 1 ... ( |_ `  ( sqr `  N ) ) ) )  e. 
Fin )
3930, 37, 38mp2an 672 . . . . . 6  |-  ( { x  e.  M  | 
( Q `  x
)  =  1 }  X.  ( 1 ... ( |_ `  ( sqr `  N ) ) ) )  e.  Fin
40 simpr 461 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  M )  ->  y  e.  M )
414, 40sseldi 3497 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  M )  ->  y  e.  ( 1 ... N
) )
42 elfznn 11739 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( 1 ... N )  ->  y  e.  NN )
4341, 42syl 16 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  M )  ->  y  e.  NN )
44 prmreclem2.5 . . . . . . . . . . . . . . . . . . 19  |-  Q  =  ( n  e.  NN  |->  sup ( { r  e.  NN  |  ( r ^ 2 )  ||  n } ,  RR ,  <  ) )
4544prmreclem1 14446 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  NN  ->  (
( Q `  y
)  e.  NN  /\  ( ( Q `  y ) ^ 2 )  ||  y  /\  ( n  e.  ( ZZ>=
`  2 )  ->  -.  ( n ^ 2 )  ||  ( y  /  ( ( Q `
 y ) ^
2 ) ) ) ) )
4645simp2d 1009 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  NN  ->  (
( Q `  y
) ^ 2 ) 
||  y )
4743, 46syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  M )  ->  (
( Q `  y
) ^ 2 ) 
||  y )
4845simp1d 1008 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  NN  ->  ( Q `  y )  e.  NN )
4943, 48syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  M )  ->  ( Q `  y )  e.  NN )
5049nnsqcld 12333 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  M )  ->  (
( Q `  y
) ^ 2 )  e.  NN )
5150nnzd 10989 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  M )  ->  (
( Q `  y
) ^ 2 )  e.  ZZ )
5250nnne0d 10601 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  M )  ->  (
( Q `  y
) ^ 2 )  =/=  0 )
5343nnzd 10989 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  M )  ->  y  e.  ZZ )
54 dvdsval2 14001 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( Q `  y ) ^ 2 )  e.  ZZ  /\  ( ( Q `  y ) ^ 2 )  =/=  0  /\  y  e.  ZZ )  ->  ( ( ( Q `  y ) ^ 2 )  ||  y 
<->  ( y  /  (
( Q `  y
) ^ 2 ) )  e.  ZZ ) )
5551, 52, 53, 54syl3anc 1228 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  M )  ->  (
( ( Q `  y ) ^ 2 )  ||  y  <->  ( y  /  ( ( Q `
 y ) ^
2 ) )  e.  ZZ ) )
5647, 55mpbid 210 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  M )  ->  (
y  /  ( ( Q `  y ) ^ 2 ) )  e.  ZZ )
57 nnre 10563 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  NN  ->  y  e.  RR )
58 nngt0 10585 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  NN  ->  0  <  y )
5957, 58jca 532 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  NN  ->  (
y  e.  RR  /\  0  <  y ) )
60 nnre 10563 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( Q `  y
) ^ 2 )  e.  NN  ->  (
( Q `  y
) ^ 2 )  e.  RR )
61 nngt0 10585 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( Q `  y
) ^ 2 )  e.  NN  ->  0  <  ( ( Q `  y ) ^ 2 ) )
6260, 61jca 532 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Q `  y
) ^ 2 )  e.  NN  ->  (
( ( Q `  y ) ^ 2 )  e.  RR  /\  0  <  ( ( Q `
 y ) ^
2 ) ) )
63 divgt0 10431 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  RR  /\  0  <  y )  /\  ( ( ( Q `  y ) ^ 2 )  e.  RR  /\  0  < 
( ( Q `  y ) ^ 2 ) ) )  -> 
0  <  ( y  /  ( ( Q `
 y ) ^
2 ) ) )
6459, 62, 63syl2an 477 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  NN  /\  ( ( Q `  y ) ^ 2 )  e.  NN )  ->  0  <  (
y  /  ( ( Q `  y ) ^ 2 ) ) )
6543, 50, 64syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  M )  ->  0  <  ( y  /  (
( Q `  y
) ^ 2 ) ) )
66 elnnz 10895 . . . . . . . . . . . . . . 15  |-  ( ( y  /  ( ( Q `  y ) ^ 2 ) )  e.  NN  <->  ( (
y  /  ( ( Q `  y ) ^ 2 ) )  e.  ZZ  /\  0  <  ( y  /  (
( Q `  y
) ^ 2 ) ) ) )
6756, 65, 66sylanbrc 664 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  M )  ->  (
y  /  ( ( Q `  y ) ^ 2 ) )  e.  NN )
6867nnred 10571 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  M )  ->  (
y  /  ( ( Q `  y ) ^ 2 ) )  e.  RR )
6943nnred 10571 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  M )  ->  y  e.  RR )
7017nnred 10571 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  RR )
7170adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  M )  ->  N  e.  RR )
72 dvdsmul1 14017 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  /  (
( Q `  y
) ^ 2 ) )  e.  ZZ  /\  ( ( Q `  y ) ^ 2 )  e.  ZZ )  ->  ( y  / 
( ( Q `  y ) ^ 2 ) )  ||  (
( y  /  (
( Q `  y
) ^ 2 ) )  x.  ( ( Q `  y ) ^ 2 ) ) )
7356, 51, 72syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  M )  ->  (
y  /  ( ( Q `  y ) ^ 2 ) ) 
||  ( ( y  /  ( ( Q `
 y ) ^
2 ) )  x.  ( ( Q `  y ) ^ 2 ) ) )
7443nncnd 10572 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  M )  ->  y  e.  CC )
7550nncnd 10572 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  M )  ->  (
( Q `  y
) ^ 2 )  e.  CC )
7674, 75, 52divcan1d 10342 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  M )  ->  (
( y  /  (
( Q `  y
) ^ 2 ) )  x.  ( ( Q `  y ) ^ 2 ) )  =  y )
7773, 76breqtrd 4480 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  M )  ->  (
y  /  ( ( Q `  y ) ^ 2 ) ) 
||  y )
78 dvdsle 14043 . . . . . . . . . . . . . . 15  |-  ( ( ( y  /  (
( Q `  y
) ^ 2 ) )  e.  ZZ  /\  y  e.  NN )  ->  ( ( y  / 
( ( Q `  y ) ^ 2 ) )  ||  y  ->  ( y  /  (
( Q `  y
) ^ 2 ) )  <_  y )
)
7956, 43, 78syl2anc 661 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  M )  ->  (
( y  /  (
( Q `  y
) ^ 2 ) )  ||  y  -> 
( y  /  (
( Q `  y
) ^ 2 ) )  <_  y )
)
8077, 79mpd 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  M )  ->  (
y  /  ( ( Q `  y ) ^ 2 ) )  <_  y )
81 elfzle2 11715 . . . . . . . . . . . . . 14  |-  ( y  e.  ( 1 ... N )  ->  y  <_  N )
8241, 81syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  M )  ->  y  <_  N )
8368, 69, 71, 80, 82letrd 9756 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  M )  ->  (
y  /  ( ( Q `  y ) ^ 2 ) )  <_  N )
84 nnuz 11141 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
8567, 84syl6eleq 2555 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  M )  ->  (
y  /  ( ( Q `  y ) ^ 2 ) )  e.  ( ZZ>= `  1
) )
8617nnzd 10989 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  ZZ )
8786adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  M )  ->  N  e.  ZZ )
88 elfz5 11705 . . . . . . . . . . . . 13  |-  ( ( ( y  /  (
( Q `  y
) ^ 2 ) )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ZZ )  ->  (
( y  /  (
( Q `  y
) ^ 2 ) )  e.  ( 1 ... N )  <->  ( y  /  ( ( Q `
 y ) ^
2 ) )  <_  N ) )
8985, 87, 88syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  M )  ->  (
( y  /  (
( Q `  y
) ^ 2 ) )  e.  ( 1 ... N )  <->  ( y  /  ( ( Q `
 y ) ^
2 ) )  <_  N ) )
9083, 89mpbird 232 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  M )  ->  (
y  /  ( ( Q `  y ) ^ 2 ) )  e.  ( 1 ... N ) )
91 breq2 4460 . . . . . . . . . . . . . . . . 17  |-  ( n  =  y  ->  (
p  ||  n  <->  p  ||  y
) )
9291notbid 294 . . . . . . . . . . . . . . . 16  |-  ( n  =  y  ->  ( -.  p  ||  n  <->  -.  p  ||  y ) )
9392ralbidv 2896 . . . . . . . . . . . . . . 15  |-  ( n  =  y  ->  ( A. p  e.  ( Prime  \  ( 1 ... K ) )  -.  p  ||  n  <->  A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  y
) )
9493, 2elrab2 3259 . . . . . . . . . . . . . 14  |-  ( y  e.  M  <->  ( y  e.  ( 1 ... N
)  /\  A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  y
) )
9540, 94sylib 196 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  M )  ->  (
y  e.  ( 1 ... N )  /\  A. p  e.  ( Prime  \  ( 1 ... K ) )  -.  p  ||  y ) )
9695simprd 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  M )  ->  A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  y
)
9777adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  M )  /\  p  e.  ( Prime  \  (
1 ... K ) ) )  ->  ( y  /  ( ( Q `
 y ) ^
2 ) )  ||  y )
98 eldifi 3622 . . . . . . . . . . . . . . . . . 18  |-  ( p  e.  ( Prime  \  (
1 ... K ) )  ->  p  e.  Prime )
99 prmz 14233 . . . . . . . . . . . . . . . . . 18  |-  ( p  e.  Prime  ->  p  e.  ZZ )
10098, 99syl 16 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  ( Prime  \  (
1 ... K ) )  ->  p  e.  ZZ )
101100adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  M )  /\  p  e.  ( Prime  \  (
1 ... K ) ) )  ->  p  e.  ZZ )
10256adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  M )  /\  p  e.  ( Prime  \  (
1 ... K ) ) )  ->  ( y  /  ( ( Q `
 y ) ^
2 ) )  e.  ZZ )
10353adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  M )  /\  p  e.  ( Prime  \  (
1 ... K ) ) )  ->  y  e.  ZZ )
104 dvdstr 14030 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  ZZ  /\  ( y  /  (
( Q `  y
) ^ 2 ) )  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( p  ||  ( y  /  (
( Q `  y
) ^ 2 ) )  /\  ( y  /  ( ( Q `
 y ) ^
2 ) )  ||  y )  ->  p  ||  y ) )
105101, 102, 103, 104syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  M )  /\  p  e.  ( Prime  \  (
1 ... K ) ) )  ->  ( (
p  ||  ( y  /  ( ( Q `
 y ) ^
2 ) )  /\  ( y  /  (
( Q `  y
) ^ 2 ) )  ||  y )  ->  p  ||  y
) )
10697, 105mpan2d 674 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  M )  /\  p  e.  ( Prime  \  (
1 ... K ) ) )  ->  ( p  ||  ( y  /  (
( Q `  y
) ^ 2 ) )  ->  p  ||  y
) )
107106con3d 133 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  M )  /\  p  e.  ( Prime  \  (
1 ... K ) ) )  ->  ( -.  p  ||  y  ->  -.  p  ||  ( y  / 
( ( Q `  y ) ^ 2 ) ) ) )
108107ralimdva 2865 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  M )  ->  ( A. p  e.  ( Prime  \  ( 1 ... K ) )  -.  p  ||  y  ->  A. p  e.  ( Prime  \  ( 1 ... K ) )  -.  p  ||  ( y  /  ( ( Q `
 y ) ^
2 ) ) ) )
10996, 108mpd 15 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  M )  ->  A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  (
y  /  ( ( Q `  y ) ^ 2 ) ) )
110 breq2 4460 . . . . . . . . . . . . . 14  |-  ( n  =  ( y  / 
( ( Q `  y ) ^ 2 ) )  ->  (
p  ||  n  <->  p  ||  (
y  /  ( ( Q `  y ) ^ 2 ) ) ) )
111110notbid 294 . . . . . . . . . . . . 13  |-  ( n  =  ( y  / 
( ( Q `  y ) ^ 2 ) )  ->  ( -.  p  ||  n  <->  -.  p  ||  ( y  /  (
( Q `  y
) ^ 2 ) ) ) )
112111ralbidv 2896 . . . . . . . . . . . 12  |-  ( n  =  ( y  / 
( ( Q `  y ) ^ 2 ) )  ->  ( A. p  e.  ( Prime  \  ( 1 ... K ) )  -.  p  ||  n  <->  A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  (
y  /  ( ( Q `  y ) ^ 2 ) ) ) )
113112, 2elrab2 3259 . . . . . . . . . . 11  |-  ( ( y  /  ( ( Q `  y ) ^ 2 ) )  e.  M  <->  ( (
y  /  ( ( Q `  y ) ^ 2 ) )  e.  ( 1 ... N )  /\  A. p  e.  ( Prime  \  ( 1 ... K
) )  -.  p  ||  ( y  /  (
( Q `  y
) ^ 2 ) ) ) )
11490, 109, 113sylanbrc 664 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  M )  ->  (
y  /  ( ( Q `  y ) ^ 2 ) )  e.  M )
11544prmreclem1 14446 . . . . . . . . . . . . 13  |-  ( ( y  /  ( ( Q `  y ) ^ 2 ) )  e.  NN  ->  (
( Q `  (
y  /  ( ( Q `  y ) ^ 2 ) ) )  e.  NN  /\  ( ( Q `  ( y  /  (
( Q `  y
) ^ 2 ) ) ) ^ 2 )  ||  ( y  /  ( ( Q `
 y ) ^
2 ) )  /\  ( A  e.  ( ZZ>=
`  2 )  ->  -.  ( A ^ 2 )  ||  ( ( y  /  ( ( Q `  y ) ^ 2 ) )  /  ( ( Q `
 ( y  / 
( ( Q `  y ) ^ 2 ) ) ) ^
2 ) ) ) ) )
116115simp2d 1009 . . . . . . . . . . . 12  |-  ( ( y  /  ( ( Q `  y ) ^ 2 ) )  e.  NN  ->  (
( Q `  (
y  /  ( ( Q `  y ) ^ 2 ) ) ) ^ 2 ) 
||  ( y  / 
( ( Q `  y ) ^ 2 ) ) )
11767, 116syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  M )  ->  (
( Q `  (
y  /  ( ( Q `  y ) ^ 2 ) ) ) ^ 2 ) 
||  ( y  / 
( ( Q `  y ) ^ 2 ) ) )
118115simp1d 1008 . . . . . . . . . . . . . . 15  |-  ( ( y  /  ( ( Q `  y ) ^ 2 ) )  e.  NN  ->  ( Q `  ( y  /  ( ( Q `
 y ) ^
2 ) ) )  e.  NN )
11967, 118syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  M )  ->  ( Q `  ( y  /  ( ( Q `
 y ) ^
2 ) ) )  e.  NN )
120 elnn1uz2 11183 . . . . . . . . . . . . . 14  |-  ( ( Q `  ( y  /  ( ( Q `
 y ) ^
2 ) ) )  e.  NN  <->  ( ( Q `  ( y  /  ( ( Q `
 y ) ^
2 ) ) )  =  1  \/  ( Q `  ( y  /  ( ( Q `
 y ) ^
2 ) ) )  e.  ( ZZ>= `  2
) ) )
121119, 120sylib 196 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  M )  ->  (
( Q `  (
y  /  ( ( Q `  y ) ^ 2 ) ) )  =  1  \/  ( Q `  (
y  /  ( ( Q `  y ) ^ 2 ) ) )  e.  ( ZZ>= ` 
2 ) ) )
122121ord 377 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  M )  ->  ( -.  ( Q `  (
y  /  ( ( Q `  y ) ^ 2 ) ) )  =  1  -> 
( Q `  (
y  /  ( ( Q `  y ) ^ 2 ) ) )  e.  ( ZZ>= ` 
2 ) ) )
12344prmreclem1 14446 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( Q `  y
)  e.  NN  /\  ( ( Q `  y ) ^ 2 )  ||  y  /\  ( ( Q `  ( y  /  (
( Q `  y
) ^ 2 ) ) )  e.  (
ZZ>= `  2 )  ->  -.  ( ( Q `  ( y  /  (
( Q `  y
) ^ 2 ) ) ) ^ 2 )  ||  ( y  /  ( ( Q `
 y ) ^
2 ) ) ) ) )
124123simp3d 1010 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( Q `  (
y  /  ( ( Q `  y ) ^ 2 ) ) )  e.  ( ZZ>= ` 
2 )  ->  -.  ( ( Q `  ( y  /  (
( Q `  y
) ^ 2 ) ) ) ^ 2 )  ||  ( y  /  ( ( Q `
 y ) ^
2 ) ) ) )
12543, 122, 124sylsyld 56 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  M )  ->  ( -.  ( Q `  (
y  /  ( ( Q `  y ) ^ 2 ) ) )  =  1  ->  -.  ( ( Q `  ( y  /  (
( Q `  y
) ^ 2 ) ) ) ^ 2 )  ||  ( y  /  ( ( Q `
 y ) ^
2 ) ) ) )
126117, 125mt4d 138 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  M )  ->  ( Q `  ( y  /  ( ( Q `
 y ) ^
2 ) ) )  =  1 )
127 fveq2 5872 . . . . . . . . . . . 12  |-  ( x  =  ( y  / 
( ( Q `  y ) ^ 2 ) )  ->  ( Q `  x )  =  ( Q `  ( y  /  (
( Q `  y
) ^ 2 ) ) ) )
128127eqeq1d 2459 . . . . . . . . . . 11  |-  ( x  =  ( y  / 
( ( Q `  y ) ^ 2 ) )  ->  (
( Q `  x
)  =  1  <->  ( Q `  ( y  /  ( ( Q `
 y ) ^
2 ) ) )  =  1 ) )
129128elrab 3257 . . . . . . . . . 10  |-  ( ( y  /  ( ( Q `  y ) ^ 2 ) )  e.  { x  e.  M  |  ( Q `
 x )  =  1 }  <->  ( (
y  /  ( ( Q `  y ) ^ 2 ) )  e.  M  /\  ( Q `  ( y  /  ( ( Q `
 y ) ^
2 ) ) )  =  1 ) )
130114, 126, 129sylanbrc 664 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  M )  ->  (
y  /  ( ( Q `  y ) ^ 2 ) )  e.  { x  e.  M  |  ( Q `
 x )  =  1 } )
13150nnred 10571 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  M )  ->  (
( Q `  y
) ^ 2 )  e.  RR )
132 dvdsle 14043 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Q `  y ) ^ 2 )  e.  ZZ  /\  y  e.  NN )  ->  ( ( ( Q `
 y ) ^
2 )  ||  y  ->  ( ( Q `  y ) ^ 2 )  <_  y )
)
13351, 43, 132syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  M )  ->  (
( ( Q `  y ) ^ 2 )  ||  y  -> 
( ( Q `  y ) ^ 2 )  <_  y )
)
13447, 133mpd 15 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  M )  ->  (
( Q `  y
) ^ 2 )  <_  y )
135131, 69, 71, 134, 82letrd 9756 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  M )  ->  (
( Q `  y
) ^ 2 )  <_  N )
13671recnd 9639 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  M )  ->  N  e.  CC )
137136sqsqrtd 13282 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  M )  ->  (
( sqr `  N
) ^ 2 )  =  N )
138135, 137breqtrrd 4482 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  M )  ->  (
( Q `  y
) ^ 2 )  <_  ( ( sqr `  N ) ^ 2 ) )
13949nnrpd 11280 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  M )  ->  ( Q `  y )  e.  RR+ )
14019adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  M )  ->  ( sqr `  N )  e.  RR+ )
141 rprege0 11259 . . . . . . . . . . . . . 14  |-  ( ( Q `  y )  e.  RR+  ->  ( ( Q `  y )  e.  RR  /\  0  <_  ( Q `  y
) ) )
142 rprege0 11259 . . . . . . . . . . . . . 14  |-  ( ( sqr `  N )  e.  RR+  ->  ( ( sqr `  N )  e.  RR  /\  0  <_  ( sqr `  N
) ) )
143 le2sq 12245 . . . . . . . . . . . . . 14  |-  ( ( ( ( Q `  y )  e.  RR  /\  0  <_  ( Q `  y ) )  /\  ( ( sqr `  N
)  e.  RR  /\  0  <_  ( sqr `  N
) ) )  -> 
( ( Q `  y )  <_  ( sqr `  N )  <->  ( ( Q `  y ) ^ 2 )  <_ 
( ( sqr `  N
) ^ 2 ) ) )
144141, 142, 143syl2an 477 . . . . . . . . . . . . 13  |-  ( ( ( Q `  y
)  e.  RR+  /\  ( sqr `  N )  e.  RR+ )  ->  ( ( Q `  y )  <_  ( sqr `  N
)  <->  ( ( Q `
 y ) ^
2 )  <_  (
( sqr `  N
) ^ 2 ) ) )
145139, 140, 144syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  M )  ->  (
( Q `  y
)  <_  ( sqr `  N )  <->  ( ( Q `  y ) ^ 2 )  <_ 
( ( sqr `  N
) ^ 2 ) ) )
146138, 145mpbird 232 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  M )  ->  ( Q `  y )  <_  ( sqr `  N
) )
14726adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  M )  ->  ( sqr `  N )  e.  RR )
14849nnzd 10989 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  M )  ->  ( Q `  y )  e.  ZZ )
149 flge 11945 . . . . . . . . . . . 12  |-  ( ( ( sqr `  N
)  e.  RR  /\  ( Q `  y )  e.  ZZ )  -> 
( ( Q `  y )  <_  ( sqr `  N )  <->  ( Q `  y )  <_  ( |_ `  ( sqr `  N
) ) ) )
150147, 148, 149syl2anc 661 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  M )  ->  (
( Q `  y
)  <_  ( sqr `  N )  <->  ( Q `  y )  <_  ( |_ `  ( sqr `  N
) ) ) )
151146, 150mpbid 210 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  M )  ->  ( Q `  y )  <_  ( |_ `  ( sqr `  N ) ) )
15249, 84syl6eleq 2555 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  M )  ->  ( Q `  y )  e.  ( ZZ>= `  1 )
)
15322nn0zd 10988 . . . . . . . . . . . 12  |-  ( ph  ->  ( |_ `  ( sqr `  N ) )  e.  ZZ )
154153adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  M )  ->  ( |_ `  ( sqr `  N
) )  e.  ZZ )
155 elfz5 11705 . . . . . . . . . . 11  |-  ( ( ( Q `  y
)  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  ( sqr `  N
) )  e.  ZZ )  ->  ( ( Q `
 y )  e.  ( 1 ... ( |_ `  ( sqr `  N
) ) )  <->  ( Q `  y )  <_  ( |_ `  ( sqr `  N
) ) ) )
156152, 154, 155syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  M )  ->  (
( Q `  y
)  e.  ( 1 ... ( |_ `  ( sqr `  N ) ) )  <->  ( Q `  y )  <_  ( |_ `  ( sqr `  N
) ) ) )
157151, 156mpbird 232 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  M )  ->  ( Q `  y )  e.  ( 1 ... ( |_ `  ( sqr `  N
) ) ) )
158 opelxpi 5040 . . . . . . . . 9  |-  ( ( ( y  /  (
( Q `  y
) ^ 2 ) )  e.  { x  e.  M  |  ( Q `  x )  =  1 }  /\  ( Q `  y )  e.  ( 1 ... ( |_ `  ( sqr `  N ) ) ) )  ->  <. (
y  /  ( ( Q `  y ) ^ 2 ) ) ,  ( Q `  y ) >.  e.  ( { x  e.  M  |  ( Q `  x )  =  1 }  X.  ( 1 ... ( |_ `  ( sqr `  N ) ) ) ) )
159130, 157, 158syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  y  e.  M )  ->  <. (
y  /  ( ( Q `  y ) ^ 2 ) ) ,  ( Q `  y ) >.  e.  ( { x  e.  M  |  ( Q `  x )  =  1 }  X.  ( 1 ... ( |_ `  ( sqr `  N ) ) ) ) )
160159ex 434 . . . . . . 7  |-  ( ph  ->  ( y  e.  M  -> 
<. ( y  /  (
( Q `  y
) ^ 2 ) ) ,  ( Q `
 y ) >.  e.  ( { x  e.  M  |  ( Q `
 x )  =  1 }  X.  (
1 ... ( |_ `  ( sqr `  N ) ) ) ) ) )
161 ovex 6324 . . . . . . . . . . . 12  |-  ( y  /  ( ( Q `
 y ) ^
2 ) )  e. 
_V
162 fvex 5882 . . . . . . . . . . . 12  |-  ( Q `
 y )  e. 
_V
163161, 162opth 4730 . . . . . . . . . . 11  |-  ( <.
( y  /  (
( Q `  y
) ^ 2 ) ) ,  ( Q `
 y ) >.  =  <. ( z  / 
( ( Q `  z ) ^ 2 ) ) ,  ( Q `  z )
>. 
<->  ( ( y  / 
( ( Q `  y ) ^ 2 ) )  =  ( z  /  ( ( Q `  z ) ^ 2 ) )  /\  ( Q `  y )  =  ( Q `  z ) ) )
164 oveq1 6303 . . . . . . . . . . . 12  |-  ( ( Q `  y )  =  ( Q `  z )  ->  (
( Q `  y
) ^ 2 )  =  ( ( Q `
 z ) ^
2 ) )
165 oveq12 6305 . . . . . . . . . . . 12  |-  ( ( ( y  /  (
( Q `  y
) ^ 2 ) )  =  ( z  /  ( ( Q `
 z ) ^
2 ) )  /\  ( ( Q `  y ) ^ 2 )  =  ( ( Q `  z ) ^ 2 ) )  ->  ( ( y  /  ( ( Q `
 y ) ^
2 ) )  x.  ( ( Q `  y ) ^ 2 ) )  =  ( ( z  /  (
( Q `  z
) ^ 2 ) )  x.  ( ( Q `  z ) ^ 2 ) ) )
166164, 165sylan2 474 . . . . . . . . . . 11  |-  ( ( ( y  /  (
( Q `  y
) ^ 2 ) )  =  ( z  /  ( ( Q `
 z ) ^
2 ) )  /\  ( Q `  y )  =  ( Q `  z ) )  -> 
( ( y  / 
( ( Q `  y ) ^ 2 ) )  x.  (
( Q `  y
) ^ 2 ) )  =  ( ( z  /  ( ( Q `  z ) ^ 2 ) )  x.  ( ( Q `
 z ) ^
2 ) ) )
167163, 166sylbi 195 . . . . . . . . . 10  |-  ( <.
( y  /  (
( Q `  y
) ^ 2 ) ) ,  ( Q `
 y ) >.  =  <. ( z  / 
( ( Q `  z ) ^ 2 ) ) ,  ( Q `  z )
>.  ->  ( ( y  /  ( ( Q `
 y ) ^
2 ) )  x.  ( ( Q `  y ) ^ 2 ) )  =  ( ( z  /  (
( Q `  z
) ^ 2 ) )  x.  ( ( Q `  z ) ^ 2 ) ) )
16876adantrr 716 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  M  /\  z  e.  M ) )  -> 
( ( y  / 
( ( Q `  y ) ^ 2 ) )  x.  (
( Q `  y
) ^ 2 ) )  =  y )
16942ssriv 3503 . . . . . . . . . . . . . . 15  |-  ( 1 ... N )  C_  NN
1704, 169sstri 3508 . . . . . . . . . . . . . 14  |-  M  C_  NN
171 simprr 757 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  M  /\  z  e.  M ) )  -> 
z  e.  M )
172170, 171sseldi 3497 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  M  /\  z  e.  M ) )  -> 
z  e.  NN )
173172nncnd 10572 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  M  /\  z  e.  M ) )  -> 
z  e.  CC )
17444prmreclem1 14446 . . . . . . . . . . . . . . . 16  |-  ( z  e.  NN  ->  (
( Q `  z
)  e.  NN  /\  ( ( Q `  z ) ^ 2 )  ||  z  /\  ( 2  e.  (
ZZ>= `  2 )  ->  -.  ( 2 ^ 2 )  ||  ( z  /  ( ( Q `
 z ) ^
2 ) ) ) ) )
175174simp1d 1008 . . . . . . . . . . . . . . 15  |-  ( z  e.  NN  ->  ( Q `  z )  e.  NN )
176172, 175syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  M  /\  z  e.  M ) )  -> 
( Q `  z
)  e.  NN )
177176nnsqcld 12333 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  M  /\  z  e.  M ) )  -> 
( ( Q `  z ) ^ 2 )  e.  NN )
178177nncnd 10572 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  M  /\  z  e.  M ) )  -> 
( ( Q `  z ) ^ 2 )  e.  CC )
179177nnne0d 10601 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  M  /\  z  e.  M ) )  -> 
( ( Q `  z ) ^ 2 )  =/=  0 )
180173, 178, 179divcan1d 10342 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  M  /\  z  e.  M ) )  -> 
( ( z  / 
( ( Q `  z ) ^ 2 ) )  x.  (
( Q `  z
) ^ 2 ) )  =  z )
181168, 180eqeq12d 2479 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  M  /\  z  e.  M ) )  -> 
( ( ( y  /  ( ( Q `
 y ) ^
2 ) )  x.  ( ( Q `  y ) ^ 2 ) )  =  ( ( z  /  (
( Q `  z
) ^ 2 ) )  x.  ( ( Q `  z ) ^ 2 ) )  <-> 
y  =  z ) )
182167, 181syl5ib 219 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  M  /\  z  e.  M ) )  -> 
( <. ( y  / 
( ( Q `  y ) ^ 2 ) ) ,  ( Q `  y )
>.  =  <. ( z  /  ( ( Q `
 z ) ^
2 ) ) ,  ( Q `  z
) >.  ->  y  =  z ) )
183 id 22 . . . . . . . . . . 11  |-  ( y  =  z  ->  y  =  z )
184 fveq2 5872 . . . . . . . . . . . 12  |-  ( y  =  z  ->  ( Q `  y )  =  ( Q `  z ) )
185184oveq1d 6311 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
( Q `  y
) ^ 2 )  =  ( ( Q `
 z ) ^
2 ) )
186183, 185oveq12d 6314 . . . . . . . . . 10  |-  ( y  =  z  ->  (
y  /  ( ( Q `  y ) ^ 2 ) )  =  ( z  / 
( ( Q `  z ) ^ 2 ) ) )
187186, 184opeq12d 4227 . . . . . . . . 9  |-  ( y  =  z  ->  <. (
y  /  ( ( Q `  y ) ^ 2 ) ) ,  ( Q `  y ) >.  =  <. ( z  /  ( ( Q `  z ) ^ 2 ) ) ,  ( Q `  z ) >. )
188182, 187impbid1 203 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  M  /\  z  e.  M ) )  -> 
( <. ( y  / 
( ( Q `  y ) ^ 2 ) ) ,  ( Q `  y )
>.  =  <. ( z  /  ( ( Q `
 z ) ^
2 ) ) ,  ( Q `  z
) >. 
<->  y  =  z ) )
189188ex 434 . . . . . . 7  |-  ( ph  ->  ( ( y  e.  M  /\  z  e.  M )  ->  ( <. ( y  /  (
( Q `  y
) ^ 2 ) ) ,  ( Q `
 y ) >.  =  <. ( z  / 
( ( Q `  z ) ^ 2 ) ) ,  ( Q `  z )
>. 
<->  y  =  z ) ) )
190160, 189dom2d 7575 . . . . . 6  |-  ( ph  ->  ( ( { x  e.  M  |  ( Q `  x )  =  1 }  X.  ( 1 ... ( |_ `  ( sqr `  N
) ) ) )  e.  Fin  ->  M  ~<_  ( { x  e.  M  |  ( Q `  x )  =  1 }  X.  ( 1 ... ( |_ `  ( sqr `  N ) ) ) ) ) )
19139, 190mpi 17 . . . . 5  |-  ( ph  ->  M  ~<_  ( { x  e.  M  |  ( Q `  x )  =  1 }  X.  ( 1 ... ( |_ `  ( sqr `  N
) ) ) ) )
192 hashdom 12450 . . . . . 6  |-  ( ( M  e.  Fin  /\  ( { x  e.  M  |  ( Q `  x )  =  1 }  X.  ( 1 ... ( |_ `  ( sqr `  N ) ) ) )  e. 
Fin )  ->  (
( # `  M )  <_  ( # `  ( { x  e.  M  |  ( Q `  x )  =  1 }  X.  ( 1 ... ( |_ `  ( sqr `  N ) ) ) ) )  <-> 
M  ~<_  ( { x  e.  M  |  ( Q `  x )  =  1 }  X.  ( 1 ... ( |_ `  ( sqr `  N
) ) ) ) ) )
1936, 39, 192mp2an 672 . . . . 5  |-  ( (
# `  M )  <_  ( # `  ( { x  e.  M  |  ( Q `  x )  =  1 }  X.  ( 1 ... ( |_ `  ( sqr `  N ) ) ) ) )  <-> 
M  ~<_  ( { x  e.  M  |  ( Q `  x )  =  1 }  X.  ( 1 ... ( |_ `  ( sqr `  N
) ) ) ) )
194191, 193sylibr 212 . . . 4  |-  ( ph  ->  ( # `  M
)  <_  ( # `  ( { x  e.  M  |  ( Q `  x )  =  1 }  X.  ( 1 ... ( |_ `  ( sqr `  N ) ) ) ) ) )
195 hashxp 12496 . . . . . 6  |-  ( ( { x  e.  M  |  ( Q `  x )  =  1 }  e.  Fin  /\  ( 1 ... ( |_ `  ( sqr `  N
) ) )  e. 
Fin )  ->  ( # `
 ( { x  e.  M  |  ( Q `  x )  =  1 }  X.  ( 1 ... ( |_ `  ( sqr `  N
) ) ) ) )  =  ( (
# `  { x  e.  M  |  ( Q `  x )  =  1 } )  x.  ( # `  (
1 ... ( |_ `  ( sqr `  N ) ) ) ) ) )
19630, 37, 195mp2an 672 . . . . 5  |-  ( # `  ( { x  e.  M  |  ( Q `
 x )  =  1 }  X.  (
1 ... ( |_ `  ( sqr `  N ) ) ) ) )  =  ( ( # `  { x  e.  M  |  ( Q `  x )  =  1 } )  x.  ( # `
 ( 1 ... ( |_ `  ( sqr `  N ) ) ) ) )
197 hashfz1 12422 . . . . . . 7  |-  ( ( |_ `  ( sqr `  N ) )  e. 
NN0  ->  ( # `  (
1 ... ( |_ `  ( sqr `  N ) ) ) )  =  ( |_ `  ( sqr `  N ) ) )
19822, 197syl 16 . . . . . 6  |-  ( ph  ->  ( # `  (
1 ... ( |_ `  ( sqr `  N ) ) ) )  =  ( |_ `  ( sqr `  N ) ) )
199198oveq2d 6312 . . . . 5  |-  ( ph  ->  ( ( # `  {
x  e.  M  | 
( Q `  x
)  =  1 } )  x.  ( # `  ( 1 ... ( |_ `  ( sqr `  N
) ) ) ) )  =  ( (
# `  { x  e.  M  |  ( Q `  x )  =  1 } )  x.  ( |_ `  ( sqr `  N ) ) ) )
200196, 199syl5eq 2510 . . . 4  |-  ( ph  ->  ( # `  ( { x  e.  M  |  ( Q `  x )  =  1 }  X.  ( 1 ... ( |_ `  ( sqr `  N ) ) ) ) )  =  ( ( # `  { x  e.  M  |  ( Q `  x )  =  1 } )  x.  ( |_ `  ( sqr `  N
) ) ) )
201194, 200breqtrd 4480 . . 3  |-  ( ph  ->  ( # `  M
)  <_  ( ( # `
 { x  e.  M  |  ( Q `
 x )  =  1 } )  x.  ( |_ `  ( sqr `  N ) ) ) )
20233a1i 11 . . . 4  |-  ( ph  ->  ( # `  {
x  e.  M  | 
( Q `  x
)  =  1 } )  e.  RR )
20322nn0ge0d 10876 . . . 4  |-  ( ph  ->  0  <_  ( |_ `  ( sqr `  N
) ) )
204 prmrec.1 . . . . 5  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( 1  /  n
) ,  0 ) )
205204, 12, 17, 2, 44prmreclem2 14447 . . . 4  |-  ( ph  ->  ( # `  {
x  e.  M  | 
( Q `  x
)  =  1 } )  <_  ( 2 ^ K ) )
206202, 25, 34, 203, 205lemul1ad 10505 . . 3  |-  ( ph  ->  ( ( # `  {
x  e.  M  | 
( Q `  x
)  =  1 } )  x.  ( |_
`  ( sqr `  N
) ) )  <_ 
( ( 2 ^ K )  x.  ( |_ `  ( sqr `  N
) ) ) )
20710, 36, 24, 201, 206letrd 9756 . 2  |-  ( ph  ->  ( # `  M
)  <_  ( (
2 ^ K )  x.  ( |_ `  ( sqr `  N ) ) ) )
20815nnrpd 11280 . . . 4  |-  ( ph  ->  ( 2 ^ K
)  e.  RR+ )
209208rprege0d 11288 . . 3  |-  ( ph  ->  ( ( 2 ^ K )  e.  RR  /\  0  <_  ( 2 ^ K ) ) )
210 fllelt 11937 . . . . 5  |-  ( ( sqr `  N )  e.  RR  ->  (
( |_ `  ( sqr `  N ) )  <_  ( sqr `  N
)  /\  ( sqr `  N )  <  (
( |_ `  ( sqr `  N ) )  +  1 ) ) )
21126, 210syl 16 . . . 4  |-  ( ph  ->  ( ( |_ `  ( sqr `  N ) )  <_  ( sqr `  N )  /\  ( sqr `  N )  < 
( ( |_ `  ( sqr `  N ) )  +  1 ) ) )
212211simpld 459 . . 3  |-  ( ph  ->  ( |_ `  ( sqr `  N ) )  <_  ( sqr `  N
) )
213 lemul2a 10418 . . 3  |-  ( ( ( ( |_ `  ( sqr `  N ) )  e.  RR  /\  ( sqr `  N )  e.  RR  /\  (
( 2 ^ K
)  e.  RR  /\  0  <_  ( 2 ^ K ) ) )  /\  ( |_ `  ( sqr `  N ) )  <_  ( sqr `  N ) )  -> 
( ( 2 ^ K )  x.  ( |_ `  ( sqr `  N
) ) )  <_ 
( ( 2 ^ K )  x.  ( sqr `  N ) ) )
21434, 26, 209, 212, 213syl31anc 1231 . 2  |-  ( ph  ->  ( ( 2 ^ K )  x.  ( |_ `  ( sqr `  N
) ) )  <_ 
( ( 2 ^ K )  x.  ( sqr `  N ) ) )
21510, 24, 27, 207, 214letrd 9756 1  |-  ( ph  ->  ( # `  M
)  <_  ( (
2 ^ K )  x.  ( sqr `  N
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   {crab 2811    \ cdif 3468    C_ wss 3471   ifcif 3944   <.cop 4038   class class class wbr 4456    |-> cmpt 4515    X. cxp 5006   ` cfv 5594  (class class class)co 6296    ~<_ cdom 7533   Fincfn 7535   supcsup 7918   RRcr 9508   0cc0 9509   1c1 9510    + caddc 9512    x. cmul 9514    < clt 9645    <_ cle 9646    / cdiv 10227   NNcn 10556   2c2 10606   NN0cn0 10816   ZZcz 10885   ZZ>=cuz 11106   RR+crp 11245   ...cfz 11697   |_cfl 11930   ^cexp 12169   #chash 12408   sqrcsqrt 13078    || cdvds 13998   Primecprime 14229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208  df-rp 11246  df-fz 11698  df-fl 11932  df-mod 12000  df-seq 12111  df-exp 12170  df-hash 12409  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-dvds 13999  df-gcd 14157  df-prm 14230  df-pc 14373
This theorem is referenced by:  prmreclem5  14450
  Copyright terms: Public domain W3C validator