MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem2 Structured version   Visualization version   Unicode version

Theorem prmreclem2 14940
Description: Lemma for prmrec 14945. There are at most  2 ^ K squarefree numbers which divide no primes larger than  K. (We could strengthen this to  2 ^ # ( Prime  i^i  ( 1 ... K ) ) but there's no reason to.) We establish the inequality by showing that the prime counts of the number up to  K completely determine it because all higher prime counts are zero, and they are all at most  1 because no square divides the number, so there are at most  2 ^ K possibilities. (Contributed by Mario Carneiro, 5-Aug-2014.)
Hypotheses
Ref Expression
prmrec.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( 1  /  n
) ,  0 ) )
prmrec.2  |-  ( ph  ->  K  e.  NN )
prmrec.3  |-  ( ph  ->  N  e.  NN )
prmrec.4  |-  M  =  { n  e.  ( 1 ... N )  |  A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  n }
prmreclem2.5  |-  Q  =  ( n  e.  NN  |->  sup ( { r  e.  NN  |  ( r ^ 2 )  ||  n } ,  RR ,  <  ) )
Assertion
Ref Expression
prmreclem2  |-  ( ph  ->  ( # `  {
x  e.  M  | 
( Q `  x
)  =  1 } )  <_  ( 2 ^ K ) )
Distinct variable groups:    n, p, r, x, F    n, K, p, x    n, M, p, x    ph, n, p, x    Q, n, p, r, x   
n, N, p, x
Allowed substitution hints:    ph( r)    K( r)    M( r)    N( r)

Proof of Theorem prmreclem2
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6336 . . . 4  |-  ( { 0 ,  1 }  ^m  ( 1 ... K ) )  e. 
_V
2 fveq2 5879 . . . . . . . 8  |-  ( x  =  y  ->  ( Q `  x )  =  ( Q `  y ) )
32eqeq1d 2473 . . . . . . 7  |-  ( x  =  y  ->  (
( Q `  x
)  =  1  <->  ( Q `  y )  =  1 ) )
43elrab 3184 . . . . . 6  |-  ( y  e.  { x  e.  M  |  ( Q `
 x )  =  1 }  <->  ( y  e.  M  /\  ( Q `  y )  =  1 ) )
5 prmrec.4 . . . . . . . . . . . . . . . . . . . 20  |-  M  =  { n  e.  ( 1 ... N )  |  A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  n }
6 ssrab2 3500 . . . . . . . . . . . . . . . . . . . 20  |-  { n  e.  ( 1 ... N
)  |  A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  n }  C_  ( 1 ... N )
75, 6eqsstri 3448 . . . . . . . . . . . . . . . . . . 19  |-  M  C_  ( 1 ... N
)
8 simprl 772 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( y  e.  M  /\  ( Q `  y )  =  1 ) )  ->  y  e.  M
)
98ad2antrr 740 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  y  e.  M )
107, 9sseldi 3416 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  y  e.  ( 1 ... N
) )
11 elfznn 11854 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( 1 ... N )  ->  y  e.  NN )
1210, 11syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  y  e.  NN )
13 simpr 468 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  n  e.  Prime )
14 prmuz2 14721 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  Prime  ->  n  e.  ( ZZ>= `  2 )
)
1513, 14syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  n  e.  ( ZZ>= `  2 )
)
16 prmreclem2.5 . . . . . . . . . . . . . . . . . . 19  |-  Q  =  ( n  e.  NN  |->  sup ( { r  e.  NN  |  ( r ^ 2 )  ||  n } ,  RR ,  <  ) )
1716prmreclem1 14939 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  NN  ->  (
( Q `  y
)  e.  NN  /\  ( ( Q `  y ) ^ 2 )  ||  y  /\  ( n  e.  ( ZZ>=
`  2 )  ->  -.  ( n ^ 2 )  ||  ( y  /  ( ( Q `
 y ) ^
2 ) ) ) ) )
1817simp3d 1044 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  NN  ->  (
n  e.  ( ZZ>= ` 
2 )  ->  -.  ( n ^ 2 )  ||  ( y  /  ( ( Q `
 y ) ^
2 ) ) ) )
1912, 15, 18sylc 61 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  -.  ( n ^ 2 )  ||  ( y  /  ( ( Q `
 y ) ^
2 ) ) )
20 simprr 774 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( y  e.  M  /\  ( Q `  y )  =  1 ) )  ->  ( Q `  y )  =  1 )
2120ad2antrr 740 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  ( Q `  y )  =  1 )
2221oveq1d 6323 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  (
( Q `  y
) ^ 2 )  =  ( 1 ^ 2 ) )
23 sq1 12407 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1 ^ 2 )  =  1
2422, 23syl6eq 2521 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  (
( Q `  y
) ^ 2 )  =  1 )
2524oveq2d 6324 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  (
y  /  ( ( Q `  y ) ^ 2 ) )  =  ( y  / 
1 ) )
2612nncnd 10647 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  y  e.  CC )
2726div1d 10397 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  (
y  /  1 )  =  y )
2825, 27eqtrd 2505 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  (
y  /  ( ( Q `  y ) ^ 2 ) )  =  y )
2928breq2d 4407 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  (
( n ^ 2 )  ||  ( y  /  ( ( Q `
 y ) ^
2 ) )  <->  ( n ^ 2 )  ||  y ) )
3012nnzd 11062 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  y  e.  ZZ )
31 2nn0 10910 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  NN0
3231a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  2  e.  NN0 )
33 pcdvdsb 14897 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  Prime  /\  y  e.  ZZ  /\  2  e. 
NN0 )  ->  (
2  <_  ( n  pCnt  y )  <->  ( n ^ 2 )  ||  y ) )
3413, 30, 32, 33syl3anc 1292 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  (
2  <_  ( n  pCnt  y )  <->  ( n ^ 2 )  ||  y ) )
3529, 34bitr4d 264 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  (
( n ^ 2 )  ||  ( y  /  ( ( Q `
 y ) ^
2 ) )  <->  2  <_  ( n  pCnt  y )
) )
3619, 35mtbid 307 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  -.  2  <_  ( n  pCnt  y ) )
3713, 12pccld 14879 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  (
n  pCnt  y )  e.  NN0 )
3837nn0red 10950 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  (
n  pCnt  y )  e.  RR )
39 2re 10701 . . . . . . . . . . . . . . . 16  |-  2  e.  RR
40 ltnle 9731 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  pCnt  y
)  e.  RR  /\  2  e.  RR )  ->  ( ( n  pCnt  y )  <  2  <->  -.  2  <_  ( n  pCnt  y ) ) )
4138, 39, 40sylancl 675 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  (
( n  pCnt  y
)  <  2  <->  -.  2  <_  ( n  pCnt  y
) ) )
4236, 41mpbird 240 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  (
n  pCnt  y )  <  2 )
43 df-2 10690 . . . . . . . . . . . . . 14  |-  2  =  ( 1  +  1 )
4442, 43syl6breq 4435 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  (
n  pCnt  y )  <  ( 1  +  1 ) )
4537nn0zd 11061 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  (
n  pCnt  y )  e.  ZZ )
46 1z 10991 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
47 zleltp1 11011 . . . . . . . . . . . . . 14  |-  ( ( ( n  pCnt  y
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( n  pCnt  y )  <_  1  <->  ( n  pCnt  y )  <  (
1  +  1 ) ) )
4845, 46, 47sylancl 675 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  (
( n  pCnt  y
)  <_  1  <->  ( n  pCnt  y )  <  (
1  +  1 ) ) )
4944, 48mpbird 240 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  (
n  pCnt  y )  <_  1 )
50 nn0uz 11217 . . . . . . . . . . . . . 14  |-  NN0  =  ( ZZ>= `  0 )
5137, 50syl6eleq 2559 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  (
n  pCnt  y )  e.  ( ZZ>= `  0 )
)
52 elfz5 11818 . . . . . . . . . . . . 13  |-  ( ( ( n  pCnt  y
)  e.  ( ZZ>= ` 
0 )  /\  1  e.  ZZ )  ->  (
( n  pCnt  y
)  e.  ( 0 ... 1 )  <->  ( n  pCnt  y )  <_  1
) )
5351, 46, 52sylancl 675 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  (
( n  pCnt  y
)  e.  ( 0 ... 1 )  <->  ( n  pCnt  y )  <_  1
) )
5449, 53mpbird 240 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  (
n  pCnt  y )  e.  ( 0 ... 1
) )
55 0z 10972 . . . . . . . . . . . . 13  |-  0  e.  ZZ
56 fzpr 11877 . . . . . . . . . . . . 13  |-  ( 0  e.  ZZ  ->  (
0 ... ( 0  +  1 ) )  =  { 0 ,  ( 0  +  1 ) } )
5755, 56ax-mp 5 . . . . . . . . . . . 12  |-  ( 0 ... ( 0  +  1 ) )  =  { 0 ,  ( 0  +  1 ) }
58 1e0p1 11102 . . . . . . . . . . . . 13  |-  1  =  ( 0  +  1 )
5958oveq2i 6319 . . . . . . . . . . . 12  |-  ( 0 ... 1 )  =  ( 0 ... (
0  +  1 ) )
6058preq2i 4046 . . . . . . . . . . . 12  |-  { 0 ,  1 }  =  { 0 ,  ( 0  +  1 ) }
6157, 59, 603eqtr4i 2503 . . . . . . . . . . 11  |-  ( 0 ... 1 )  =  { 0 ,  1 }
6254, 61syl6eleq 2559 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  n  e.  Prime )  ->  (
n  pCnt  y )  e.  { 0 ,  1 } )
63 c0ex 9655 . . . . . . . . . . . 12  |-  0  e.  _V
6463prid1 4071 . . . . . . . . . . 11  |-  0  e.  { 0 ,  1 }
6564a1i 11 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( y  e.  M  /\  ( Q `  y
)  =  1 ) )  /\  n  e.  ( 1 ... K
) )  /\  -.  n  e.  Prime )  -> 
0  e.  { 0 ,  1 } )
6662, 65ifclda 3904 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  M  /\  ( Q `  y )  =  1 ) )  /\  n  e.  ( 1 ... K ) )  ->  if (
n  e.  Prime ,  ( n  pCnt  y ) ,  0 )  e. 
{ 0 ,  1 } )
67 eqid 2471 . . . . . . . . 9  |-  ( n  e.  ( 1 ... K )  |->  if ( n  e.  Prime ,  ( n  pCnt  y ) ,  0 ) )  =  ( n  e.  ( 1 ... K
)  |->  if ( n  e.  Prime ,  ( n 
pCnt  y ) ,  0 ) )
6866, 67fmptd 6061 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  M  /\  ( Q `  y )  =  1 ) )  ->  ( n  e.  ( 1 ... K
)  |->  if ( n  e.  Prime ,  ( n 
pCnt  y ) ,  0 ) ) : ( 1 ... K
) --> { 0 ,  1 } )
69 prex 4642 . . . . . . . . 9  |-  { 0 ,  1 }  e.  _V
70 ovex 6336 . . . . . . . . 9  |-  ( 1 ... K )  e. 
_V
7169, 70elmap 7518 . . . . . . . 8  |-  ( ( n  e.  ( 1 ... K )  |->  if ( n  e.  Prime ,  ( n  pCnt  y
) ,  0 ) )  e.  ( { 0 ,  1 }  ^m  ( 1 ... K ) )  <->  ( n  e.  ( 1 ... K
)  |->  if ( n  e.  Prime ,  ( n 
pCnt  y ) ,  0 ) ) : ( 1 ... K
) --> { 0 ,  1 } )
7268, 71sylibr 217 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  M  /\  ( Q `  y )  =  1 ) )  ->  ( n  e.  ( 1 ... K
)  |->  if ( n  e.  Prime ,  ( n 
pCnt  y ) ,  0 ) )  e.  ( { 0 ,  1 }  ^m  (
1 ... K ) ) )
7372ex 441 . . . . . 6  |-  ( ph  ->  ( ( y  e.  M  /\  ( Q `
 y )  =  1 )  ->  (
n  e.  ( 1 ... K )  |->  if ( n  e.  Prime ,  ( n  pCnt  y
) ,  0 ) )  e.  ( { 0 ,  1 }  ^m  ( 1 ... K ) ) ) )
744, 73syl5bi 225 . . . . 5  |-  ( ph  ->  ( y  e.  {
x  e.  M  | 
( Q `  x
)  =  1 }  ->  ( n  e.  ( 1 ... K
)  |->  if ( n  e.  Prime ,  ( n 
pCnt  y ) ,  0 ) )  e.  ( { 0 ,  1 }  ^m  (
1 ... K ) ) ) )
75 fveq2 5879 . . . . . . . . 9  |-  ( x  =  z  ->  ( Q `  x )  =  ( Q `  z ) )
7675eqeq1d 2473 . . . . . . . 8  |-  ( x  =  z  ->  (
( Q `  x
)  =  1  <->  ( Q `  z )  =  1 ) )
7776elrab 3184 . . . . . . 7  |-  ( z  e.  { x  e.  M  |  ( Q `
 x )  =  1 }  <->  ( z  e.  M  /\  ( Q `  z )  =  1 ) )
784, 77anbi12i 711 . . . . . 6  |-  ( ( y  e.  { x  e.  M  |  ( Q `  x )  =  1 }  /\  z  e.  { x  e.  M  |  ( Q `  x )  =  1 } )  <-> 
( ( y  e.  M  /\  ( Q `
 y )  =  1 )  /\  (
z  e.  M  /\  ( Q `  z )  =  1 ) ) )
79 ovex 6336 . . . . . . . . . . . 12  |-  ( n 
pCnt  y )  e. 
_V
8079, 63ifex 3940 . . . . . . . . . . 11  |-  if ( n  e.  Prime ,  ( n  pCnt  y ) ,  0 )  e. 
_V
8180, 67fnmpti 5716 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... K )  |->  if ( n  e.  Prime ,  ( n  pCnt  y ) ,  0 ) )  Fn  ( 1 ... K )
82 ovex 6336 . . . . . . . . . . . 12  |-  ( n 
pCnt  z )  e. 
_V
8382, 63ifex 3940 . . . . . . . . . . 11  |-  if ( n  e.  Prime ,  ( n  pCnt  z ) ,  0 )  e. 
_V
84 eqid 2471 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... K )  |->  if ( n  e.  Prime ,  ( n  pCnt  z ) ,  0 ) )  =  ( n  e.  ( 1 ... K
)  |->  if ( n  e.  Prime ,  ( n 
pCnt  z ) ,  0 ) )
8583, 84fnmpti 5716 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... K )  |->  if ( n  e.  Prime ,  ( n  pCnt  z ) ,  0 ) )  Fn  ( 1 ... K )
86 eqfnfv 5991 . . . . . . . . . 10  |-  ( ( ( n  e.  ( 1 ... K ) 
|->  if ( n  e. 
Prime ,  ( n  pCnt  y ) ,  0 ) )  Fn  (
1 ... K )  /\  ( n  e.  (
1 ... K )  |->  if ( n  e.  Prime ,  ( n  pCnt  z
) ,  0 ) )  Fn  ( 1 ... K ) )  ->  ( ( n  e.  ( 1 ... K )  |->  if ( n  e.  Prime ,  ( n  pCnt  y ) ,  0 ) )  =  ( n  e.  ( 1 ... K
)  |->  if ( n  e.  Prime ,  ( n 
pCnt  z ) ,  0 ) )  <->  A. p  e.  ( 1 ... K
) ( ( n  e.  ( 1 ... K )  |->  if ( n  e.  Prime ,  ( n  pCnt  y ) ,  0 ) ) `
 p )  =  ( ( n  e.  ( 1 ... K
)  |->  if ( n  e.  Prime ,  ( n 
pCnt  z ) ,  0 ) ) `  p ) ) )
8781, 85, 86mp2an 686 . . . . . . . . 9  |-  ( ( n  e.  ( 1 ... K )  |->  if ( n  e.  Prime ,  ( n  pCnt  y
) ,  0 ) )  =  ( n  e.  ( 1 ... K )  |->  if ( n  e.  Prime ,  ( n  pCnt  z ) ,  0 ) )  <->  A. p  e.  (
1 ... K ) ( ( n  e.  ( 1 ... K ) 
|->  if ( n  e. 
Prime ,  ( n  pCnt  y ) ,  0 ) ) `  p
)  =  ( ( n  e.  ( 1 ... K )  |->  if ( n  e.  Prime ,  ( n  pCnt  z
) ,  0 ) ) `  p ) )
88 eleq1 2537 . . . . . . . . . . . . 13  |-  ( n  =  p  ->  (
n  e.  Prime  <->  p  e.  Prime ) )
89 oveq1 6315 . . . . . . . . . . . . 13  |-  ( n  =  p  ->  (
n  pCnt  y )  =  ( p  pCnt  y ) )
9088, 89ifbieq1d 3895 . . . . . . . . . . . 12  |-  ( n  =  p  ->  if ( n  e.  Prime ,  ( n  pCnt  y
) ,  0 )  =  if ( p  e.  Prime ,  ( p 
pCnt  y ) ,  0 ) )
91 ovex 6336 . . . . . . . . . . . . 13  |-  ( p 
pCnt  y )  e. 
_V
9291, 63ifex 3940 . . . . . . . . . . . 12  |-  if ( p  e.  Prime ,  ( p  pCnt  y ) ,  0 )  e. 
_V
9390, 67, 92fvmpt 5963 . . . . . . . . . . 11  |-  ( p  e.  ( 1 ... K )  ->  (
( n  e.  ( 1 ... K ) 
|->  if ( n  e. 
Prime ,  ( n  pCnt  y ) ,  0 ) ) `  p
)  =  if ( p  e.  Prime ,  ( p  pCnt  y ) ,  0 ) )
94 oveq1 6315 . . . . . . . . . . . . 13  |-  ( n  =  p  ->  (
n  pCnt  z )  =  ( p  pCnt  z ) )
9588, 94ifbieq1d 3895 . . . . . . . . . . . 12  |-  ( n  =  p  ->  if ( n  e.  Prime ,  ( n  pCnt  z
) ,  0 )  =  if ( p  e.  Prime ,  ( p 
pCnt  z ) ,  0 ) )
96 ovex 6336 . . . . . . . . . . . . 13  |-  ( p 
pCnt  z )  e. 
_V
9796, 63ifex 3940 . . . . . . . . . . . 12  |-  if ( p  e.  Prime ,  ( p  pCnt  z ) ,  0 )  e. 
_V
9895, 84, 97fvmpt 5963 . . . . . . . . . . 11  |-  ( p  e.  ( 1 ... K )  ->  (
( n  e.  ( 1 ... K ) 
|->  if ( n  e. 
Prime ,  ( n  pCnt  z ) ,  0 ) ) `  p
)  =  if ( p  e.  Prime ,  ( p  pCnt  z ) ,  0 ) )
9993, 98eqeq12d 2486 . . . . . . . . . 10  |-  ( p  e.  ( 1 ... K )  ->  (
( ( n  e.  ( 1 ... K
)  |->  if ( n  e.  Prime ,  ( n 
pCnt  y ) ,  0 ) ) `  p )  =  ( ( n  e.  ( 1 ... K ) 
|->  if ( n  e. 
Prime ,  ( n  pCnt  z ) ,  0 ) ) `  p
)  <->  if ( p  e. 
Prime ,  ( p  pCnt  y ) ,  0 )  =  if ( p  e.  Prime ,  ( p  pCnt  z ) ,  0 ) ) )
10099ralbiia 2822 . . . . . . . . 9  |-  ( A. p  e.  ( 1 ... K ) ( ( n  e.  ( 1 ... K ) 
|->  if ( n  e. 
Prime ,  ( n  pCnt  y ) ,  0 ) ) `  p
)  =  ( ( n  e.  ( 1 ... K )  |->  if ( n  e.  Prime ,  ( n  pCnt  z
) ,  0 ) ) `  p )  <->  A. p  e.  (
1 ... K ) if ( p  e.  Prime ,  ( p  pCnt  y
) ,  0 )  =  if ( p  e.  Prime ,  ( p 
pCnt  z ) ,  0 ) )
10187, 100bitri 257 . . . . . . . 8  |-  ( ( n  e.  ( 1 ... K )  |->  if ( n  e.  Prime ,  ( n  pCnt  y
) ,  0 ) )  =  ( n  e.  ( 1 ... K )  |->  if ( n  e.  Prime ,  ( n  pCnt  z ) ,  0 ) )  <->  A. p  e.  (
1 ... K ) if ( p  e.  Prime ,  ( p  pCnt  y
) ,  0 )  =  if ( p  e.  Prime ,  ( p 
pCnt  z ) ,  0 ) )
102 simprll 780 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
y  e.  M  /\  ( Q `  y )  =  1 )  /\  ( z  e.  M  /\  ( Q `  z
)  =  1 ) ) )  ->  y  e.  M )
103 breq2 4399 . . . . . . . . . . . . . . . . 17  |-  ( n  =  y  ->  (
p  ||  n  <->  p  ||  y
) )
104103notbid 301 . . . . . . . . . . . . . . . 16  |-  ( n  =  y  ->  ( -.  p  ||  n  <->  -.  p  ||  y ) )
105104ralbidv 2829 . . . . . . . . . . . . . . 15  |-  ( n  =  y  ->  ( A. p  e.  ( Prime  \  ( 1 ... K ) )  -.  p  ||  n  <->  A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  y
) )
106105, 5elrab2 3186 . . . . . . . . . . . . . 14  |-  ( y  e.  M  <->  ( y  e.  ( 1 ... N
)  /\  A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  y
) )
107106simprbi 471 . . . . . . . . . . . . 13  |-  ( y  e.  M  ->  A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  y
)
108102, 107syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
y  e.  M  /\  ( Q `  y )  =  1 )  /\  ( z  e.  M  /\  ( Q `  z
)  =  1 ) ) )  ->  A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  y
)
109 simprrl 782 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
y  e.  M  /\  ( Q `  y )  =  1 )  /\  ( z  e.  M  /\  ( Q `  z
)  =  1 ) ) )  ->  z  e.  M )
110 breq2 4399 . . . . . . . . . . . . . . . . 17  |-  ( n  =  z  ->  (
p  ||  n  <->  p  ||  z
) )
111110notbid 301 . . . . . . . . . . . . . . . 16  |-  ( n  =  z  ->  ( -.  p  ||  n  <->  -.  p  ||  z ) )
112111ralbidv 2829 . . . . . . . . . . . . . . 15  |-  ( n  =  z  ->  ( A. p  e.  ( Prime  \  ( 1 ... K ) )  -.  p  ||  n  <->  A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  z
) )
113112, 5elrab2 3186 . . . . . . . . . . . . . 14  |-  ( z  e.  M  <->  ( z  e.  ( 1 ... N
)  /\  A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  z
) )
114113simprbi 471 . . . . . . . . . . . . 13  |-  ( z  e.  M  ->  A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  z
)
115109, 114syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
y  e.  M  /\  ( Q `  y )  =  1 )  /\  ( z  e.  M  /\  ( Q `  z
)  =  1 ) ) )  ->  A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  z
)
116 r19.26 2904 . . . . . . . . . . . . 13  |-  ( A. p  e.  ( Prime  \  ( 1 ... K
) ) ( -.  p  ||  y  /\  -.  p  ||  z )  <-> 
( A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  y  /\  A. p  e.  ( Prime  \  ( 1 ... K ) )  -.  p  ||  z
) )
117 eldifi 3544 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  ( Prime  \  (
1 ... K ) )  ->  p  e.  Prime )
11811ssriv 3422 . . . . . . . . . . . . . . . . . . 19  |-  ( 1 ... N )  C_  NN
1197, 118sstri 3427 . . . . . . . . . . . . . . . . . 18  |-  M  C_  NN
120119, 102sseldi 3416 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
y  e.  M  /\  ( Q `  y )  =  1 )  /\  ( z  e.  M  /\  ( Q `  z
)  =  1 ) ) )  ->  y  e.  NN )
121 pceq0 14899 . . . . . . . . . . . . . . . . 17  |-  ( ( p  e.  Prime  /\  y  e.  NN )  ->  (
( p  pCnt  y
)  =  0  <->  -.  p  ||  y ) )
122117, 120, 121syl2anr 486 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
( y  e.  M  /\  ( Q `  y
)  =  1 )  /\  ( z  e.  M  /\  ( Q `
 z )  =  1 ) ) )  /\  p  e.  ( Prime  \  ( 1 ... K ) ) )  ->  ( (
p  pCnt  y )  =  0  <->  -.  p  ||  y ) )
123119, 109sseldi 3416 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
y  e.  M  /\  ( Q `  y )  =  1 )  /\  ( z  e.  M  /\  ( Q `  z
)  =  1 ) ) )  ->  z  e.  NN )
124 pceq0 14899 . . . . . . . . . . . . . . . . 17  |-  ( ( p  e.  Prime  /\  z  e.  NN )  ->  (
( p  pCnt  z
)  =  0  <->  -.  p  ||  z ) )
125117, 123, 124syl2anr 486 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
( y  e.  M  /\  ( Q `  y
)  =  1 )  /\  ( z  e.  M  /\  ( Q `
 z )  =  1 ) ) )  /\  p  e.  ( Prime  \  ( 1 ... K ) ) )  ->  ( (
p  pCnt  z )  =  0  <->  -.  p  ||  z ) )
126122, 125anbi12d 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
( y  e.  M  /\  ( Q `  y
)  =  1 )  /\  ( z  e.  M  /\  ( Q `
 z )  =  1 ) ) )  /\  p  e.  ( Prime  \  ( 1 ... K ) ) )  ->  ( (
( p  pCnt  y
)  =  0  /\  ( p  pCnt  z
)  =  0 )  <-> 
( -.  p  ||  y  /\  -.  p  ||  z ) ) )
127 eqtr3 2492 . . . . . . . . . . . . . . 15  |-  ( ( ( p  pCnt  y
)  =  0  /\  ( p  pCnt  z
)  =  0 )  ->  ( p  pCnt  y )  =  ( p 
pCnt  z ) )
128126, 127syl6bir 237 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( y  e.  M  /\  ( Q `  y
)  =  1 )  /\  ( z  e.  M  /\  ( Q `
 z )  =  1 ) ) )  /\  p  e.  ( Prime  \  ( 1 ... K ) ) )  ->  ( ( -.  p  ||  y  /\  -.  p  ||  z )  ->  ( p  pCnt  y )  =  ( p 
pCnt  z ) ) )
129128ralimdva 2805 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
y  e.  M  /\  ( Q `  y )  =  1 )  /\  ( z  e.  M  /\  ( Q `  z
)  =  1 ) ) )  ->  ( A. p  e.  ( Prime  \  ( 1 ... K ) ) ( -.  p  ||  y  /\  -.  p  ||  z
)  ->  A. p  e.  ( Prime  \  (
1 ... K ) ) ( p  pCnt  y
)  =  ( p 
pCnt  z ) ) )
130116, 129syl5bir 226 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
y  e.  M  /\  ( Q `  y )  =  1 )  /\  ( z  e.  M  /\  ( Q `  z
)  =  1 ) ) )  ->  (
( A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  y  /\  A. p  e.  ( Prime  \  ( 1 ... K ) )  -.  p  ||  z
)  ->  A. p  e.  ( Prime  \  (
1 ... K ) ) ( p  pCnt  y
)  =  ( p 
pCnt  z ) ) )
131108, 115, 130mp2and 693 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
y  e.  M  /\  ( Q `  y )  =  1 )  /\  ( z  e.  M  /\  ( Q `  z
)  =  1 ) ) )  ->  A. p  e.  ( Prime  \  (
1 ... K ) ) ( p  pCnt  y
)  =  ( p 
pCnt  z ) )
132131biantrud 515 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
y  e.  M  /\  ( Q `  y )  =  1 )  /\  ( z  e.  M  /\  ( Q `  z
)  =  1 ) ) )  ->  ( A. p  e.  ( Prime  i^i  ( 1 ... K ) ) ( p  pCnt  y )  =  ( p  pCnt  z )  <->  ( A. p  e.  ( Prime  i^i  (
1 ... K ) ) ( p  pCnt  y
)  =  ( p 
pCnt  z )  /\  A. p  e.  ( Prime  \  ( 1 ... K ) ) ( p  pCnt  y )  =  ( p  pCnt  z ) ) ) )
133 incom 3616 . . . . . . . . . . . . . . 15  |-  ( Prime  i^i  ( 1 ... K
) )  =  ( ( 1 ... K
)  i^i  Prime )
134133uneq1i 3575 . . . . . . . . . . . . . 14  |-  ( ( Prime  i^i  ( 1 ... K ) )  u.  ( ( 1 ... K )  \  Prime ) )  =  ( ( ( 1 ... K )  i^i  Prime )  u.  ( ( 1 ... K )  \  Prime ) )
135 inundif 3836 . . . . . . . . . . . . . 14  |-  ( ( ( 1 ... K
)  i^i  Prime )  u.  ( ( 1 ... K )  \  Prime ) )  =  ( 1 ... K )
136134, 135eqtri 2493 . . . . . . . . . . . . 13  |-  ( ( Prime  i^i  ( 1 ... K ) )  u.  ( ( 1 ... K )  \  Prime ) )  =  ( 1 ... K )
137136raleqi 2977 . . . . . . . . . . . 12  |-  ( A. p  e.  ( ( Prime  i^i  ( 1 ... K ) )  u.  ( ( 1 ... K )  \  Prime ) ) if ( p  e.  Prime ,  ( p 
pCnt  y ) ,  0 )  =  if ( p  e.  Prime ,  ( p  pCnt  z
) ,  0 )  <->  A. p  e.  (
1 ... K ) if ( p  e.  Prime ,  ( p  pCnt  y
) ,  0 )  =  if ( p  e.  Prime ,  ( p 
pCnt  z ) ,  0 ) )
138 ralunb 3606 . . . . . . . . . . . 12  |-  ( A. p  e.  ( ( Prime  i^i  ( 1 ... K ) )  u.  ( ( 1 ... K )  \  Prime ) ) if ( p  e.  Prime ,  ( p 
pCnt  y ) ,  0 )  =  if ( p  e.  Prime ,  ( p  pCnt  z
) ,  0 )  <-> 
( A. p  e.  ( Prime  i^i  (
1 ... K ) ) if ( p  e. 
Prime ,  ( p  pCnt  y ) ,  0 )  =  if ( p  e.  Prime ,  ( p  pCnt  z ) ,  0 )  /\  A. p  e.  ( ( 1 ... K ) 
\  Prime ) if ( p  e.  Prime ,  ( p  pCnt  y ) ,  0 )  =  if ( p  e. 
Prime ,  ( p  pCnt  z ) ,  0 ) ) )
139137, 138bitr3i 259 . . . . . . . . . . 11  |-  ( A. p  e.  ( 1 ... K ) if ( p  e.  Prime ,  ( p  pCnt  y
) ,  0 )  =  if ( p  e.  Prime ,  ( p 
pCnt  z ) ,  0 )  <->  ( A. p  e.  ( Prime  i^i  ( 1 ... K
) ) if ( p  e.  Prime ,  ( p  pCnt  y ) ,  0 )  =  if ( p  e. 
Prime ,  ( p  pCnt  z ) ,  0 )  /\  A. p  e.  ( ( 1 ... K )  \  Prime ) if ( p  e. 
Prime ,  ( p  pCnt  y ) ,  0 )  =  if ( p  e.  Prime ,  ( p  pCnt  z ) ,  0 ) ) )
140 eldifn 3545 . . . . . . . . . . . . . . 15  |-  ( p  e.  ( ( 1 ... K )  \  Prime )  ->  -.  p  e.  Prime )
141 iffalse 3881 . . . . . . . . . . . . . . . 16  |-  ( -.  p  e.  Prime  ->  if ( p  e.  Prime ,  ( p  pCnt  y
) ,  0 )  =  0 )
142 iffalse 3881 . . . . . . . . . . . . . . . 16  |-  ( -.  p  e.  Prime  ->  if ( p  e.  Prime ,  ( p  pCnt  z
) ,  0 )  =  0 )
143141, 142eqtr4d 2508 . . . . . . . . . . . . . . 15  |-  ( -.  p  e.  Prime  ->  if ( p  e.  Prime ,  ( p  pCnt  y
) ,  0 )  =  if ( p  e.  Prime ,  ( p 
pCnt  z ) ,  0 ) )
144140, 143syl 17 . . . . . . . . . . . . . 14  |-  ( p  e.  ( ( 1 ... K )  \  Prime )  ->  if (
p  e.  Prime ,  ( p  pCnt  y ) ,  0 )  =  if ( p  e. 
Prime ,  ( p  pCnt  z ) ,  0 ) )
145144rgen 2766 . . . . . . . . . . . . 13  |-  A. p  e.  ( ( 1 ... K )  \  Prime ) if ( p  e. 
Prime ,  ( p  pCnt  y ) ,  0 )  =  if ( p  e.  Prime ,  ( p  pCnt  z ) ,  0 )
146145biantru 513 . . . . . . . . . . . 12  |-  ( A. p  e.  ( Prime  i^i  ( 1 ... K
) ) if ( p  e.  Prime ,  ( p  pCnt  y ) ,  0 )  =  if ( p  e. 
Prime ,  ( p  pCnt  z ) ,  0 )  <->  ( A. p  e.  ( Prime  i^i  (
1 ... K ) ) if ( p  e. 
Prime ,  ( p  pCnt  y ) ,  0 )  =  if ( p  e.  Prime ,  ( p  pCnt  z ) ,  0 )  /\  A. p  e.  ( ( 1 ... K ) 
\  Prime ) if ( p  e.  Prime ,  ( p  pCnt  y ) ,  0 )  =  if ( p  e. 
Prime ,  ( p  pCnt  z ) ,  0 ) ) )
147 inss1 3643 . . . . . . . . . . . . . . 15  |-  ( Prime  i^i  ( 1 ... K
) )  C_  Prime
148147sseli 3414 . . . . . . . . . . . . . 14  |-  ( p  e.  ( Prime  i^i  ( 1 ... K
) )  ->  p  e.  Prime )
149 iftrue 3878 . . . . . . . . . . . . . . 15  |-  ( p  e.  Prime  ->  if ( p  e.  Prime ,  ( p  pCnt  y ) ,  0 )  =  ( p  pCnt  y
) )
150 iftrue 3878 . . . . . . . . . . . . . . 15  |-  ( p  e.  Prime  ->  if ( p  e.  Prime ,  ( p  pCnt  z ) ,  0 )  =  ( p  pCnt  z
) )
151149, 150eqeq12d 2486 . . . . . . . . . . . . . 14  |-  ( p  e.  Prime  ->  ( if ( p  e.  Prime ,  ( p  pCnt  y
) ,  0 )  =  if ( p  e.  Prime ,  ( p 
pCnt  z ) ,  0 )  <->  ( p  pCnt  y )  =  ( p  pCnt  z )
) )
152148, 151syl 17 . . . . . . . . . . . . 13  |-  ( p  e.  ( Prime  i^i  ( 1 ... K
) )  ->  ( if ( p  e.  Prime ,  ( p  pCnt  y
) ,  0 )  =  if ( p  e.  Prime ,  ( p 
pCnt  z ) ,  0 )  <->  ( p  pCnt  y )  =  ( p  pCnt  z )
) )
153152ralbiia 2822 . . . . . . . . . . . 12  |-  ( A. p  e.  ( Prime  i^i  ( 1 ... K
) ) if ( p  e.  Prime ,  ( p  pCnt  y ) ,  0 )  =  if ( p  e. 
Prime ,  ( p  pCnt  z ) ,  0 )  <->  A. p  e.  ( Prime  i^i  ( 1 ... K ) ) ( p  pCnt  y
)  =  ( p 
pCnt  z ) )
154146, 153bitr3i 259 . . . . . . . . . . 11  |-  ( ( A. p  e.  ( Prime  i^i  ( 1 ... K ) ) if ( p  e. 
Prime ,  ( p  pCnt  y ) ,  0 )  =  if ( p  e.  Prime ,  ( p  pCnt  z ) ,  0 )  /\  A. p  e.  ( ( 1 ... K ) 
\  Prime ) if ( p  e.  Prime ,  ( p  pCnt  y ) ,  0 )  =  if ( p  e. 
Prime ,  ( p  pCnt  z ) ,  0 ) )  <->  A. p  e.  ( Prime  i^i  (
1 ... K ) ) ( p  pCnt  y
)  =  ( p 
pCnt  z ) )
155139, 154bitri 257 . . . . . . . . . 10  |-  ( A. p  e.  ( 1 ... K ) if ( p  e.  Prime ,  ( p  pCnt  y
) ,  0 )  =  if ( p  e.  Prime ,  ( p 
pCnt  z ) ,  0 )  <->  A. p  e.  ( Prime  i^i  (
1 ... K ) ) ( p  pCnt  y
)  =  ( p 
pCnt  z ) )
156 inundif 3836 . . . . . . . . . . . 12  |-  ( ( Prime  i^i  ( 1 ... K ) )  u.  ( Prime  \  (
1 ... K ) ) )  =  Prime
157156raleqi 2977 . . . . . . . . . . 11  |-  ( A. p  e.  ( ( Prime  i^i  ( 1 ... K ) )  u.  ( Prime  \  (
1 ... K ) ) ) ( p  pCnt  y )  =  ( p 
pCnt  z )  <->  A. p  e.  Prime  ( p  pCnt  y )  =  ( p 
pCnt  z ) )
158 ralunb 3606 . . . . . . . . . . 11  |-  ( A. p  e.  ( ( Prime  i^i  ( 1 ... K ) )  u.  ( Prime  \  (
1 ... K ) ) ) ( p  pCnt  y )  =  ( p 
pCnt  z )  <->  ( A. p  e.  ( Prime  i^i  ( 1 ... K
) ) ( p 
pCnt  y )  =  ( p  pCnt  z
)  /\  A. p  e.  ( Prime  \  (
1 ... K ) ) ( p  pCnt  y
)  =  ( p 
pCnt  z ) ) )
159157, 158bitr3i 259 . . . . . . . . . 10  |-  ( A. p  e.  Prime  ( p 
pCnt  y )  =  ( p  pCnt  z
)  <->  ( A. p  e.  ( Prime  i^i  (
1 ... K ) ) ( p  pCnt  y
)  =  ( p 
pCnt  z )  /\  A. p  e.  ( Prime  \  ( 1 ... K ) ) ( p  pCnt  y )  =  ( p  pCnt  z ) ) )
160132, 155, 1593bitr4g 296 . . . . . . . . 9  |-  ( (
ph  /\  ( (
y  e.  M  /\  ( Q `  y )  =  1 )  /\  ( z  e.  M  /\  ( Q `  z
)  =  1 ) ) )  ->  ( A. p  e.  (
1 ... K ) if ( p  e.  Prime ,  ( p  pCnt  y
) ,  0 )  =  if ( p  e.  Prime ,  ( p 
pCnt  z ) ,  0 )  <->  A. p  e.  Prime  ( p  pCnt  y )  =  ( p 
pCnt  z ) ) )
161120nnnn0d 10949 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
y  e.  M  /\  ( Q `  y )  =  1 )  /\  ( z  e.  M  /\  ( Q `  z
)  =  1 ) ) )  ->  y  e.  NN0 )
162123nnnn0d 10949 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
y  e.  M  /\  ( Q `  y )  =  1 )  /\  ( z  e.  M  /\  ( Q `  z
)  =  1 ) ) )  ->  z  e.  NN0 )
163 pc11 14908 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  z  e.  NN0 )  -> 
( y  =  z  <->  A. p  e.  Prime  ( p  pCnt  y )  =  ( p  pCnt  z ) ) )
164161, 162, 163syl2anc 673 . . . . . . . . 9  |-  ( (
ph  /\  ( (
y  e.  M  /\  ( Q `  y )  =  1 )  /\  ( z  e.  M  /\  ( Q `  z
)  =  1 ) ) )  ->  (
y  =  z  <->  A. p  e.  Prime  ( p  pCnt  y )  =  ( p 
pCnt  z ) ) )
165160, 164bitr4d 264 . . . . . . . 8  |-  ( (
ph  /\  ( (
y  e.  M  /\  ( Q `  y )  =  1 )  /\  ( z  e.  M  /\  ( Q `  z
)  =  1 ) ) )  ->  ( A. p  e.  (
1 ... K ) if ( p  e.  Prime ,  ( p  pCnt  y
) ,  0 )  =  if ( p  e.  Prime ,  ( p 
pCnt  z ) ,  0 )  <->  y  =  z ) )
166101, 165syl5bb 265 . . . . . . 7  |-  ( (
ph  /\  ( (
y  e.  M  /\  ( Q `  y )  =  1 )  /\  ( z  e.  M  /\  ( Q `  z
)  =  1 ) ) )  ->  (
( n  e.  ( 1 ... K ) 
|->  if ( n  e. 
Prime ,  ( n  pCnt  y ) ,  0 ) )  =  ( n  e.  ( 1 ... K )  |->  if ( n  e.  Prime ,  ( n  pCnt  z
) ,  0 ) )  <->  y  =  z ) )
167166ex 441 . . . . . 6  |-  ( ph  ->  ( ( ( y  e.  M  /\  ( Q `  y )  =  1 )  /\  ( z  e.  M  /\  ( Q `  z
)  =  1 ) )  ->  ( (
n  e.  ( 1 ... K )  |->  if ( n  e.  Prime ,  ( n  pCnt  y
) ,  0 ) )  =  ( n  e.  ( 1 ... K )  |->  if ( n  e.  Prime ,  ( n  pCnt  z ) ,  0 ) )  <-> 
y  =  z ) ) )
16878, 167syl5bi 225 . . . . 5  |-  ( ph  ->  ( ( y  e. 
{ x  e.  M  |  ( Q `  x )  =  1 }  /\  z  e. 
{ x  e.  M  |  ( Q `  x )  =  1 } )  ->  (
( n  e.  ( 1 ... K ) 
|->  if ( n  e. 
Prime ,  ( n  pCnt  y ) ,  0 ) )  =  ( n  e.  ( 1 ... K )  |->  if ( n  e.  Prime ,  ( n  pCnt  z
) ,  0 ) )  <->  y  =  z ) ) )
16974, 168dom2d 7628 . . . 4  |-  ( ph  ->  ( ( { 0 ,  1 }  ^m  ( 1 ... K
) )  e.  _V  ->  { x  e.  M  |  ( Q `  x )  =  1 }  ~<_  ( { 0 ,  1 }  ^m  ( 1 ... K
) ) ) )
1701, 169mpi 20 . . 3  |-  ( ph  ->  { x  e.  M  |  ( Q `  x )  =  1 }  ~<_  ( { 0 ,  1 }  ^m  ( 1 ... K
) ) )
171 fzfi 12223 . . . . . . 7  |-  ( 1 ... N )  e. 
Fin
172 ssfi 7810 . . . . . . 7  |-  ( ( ( 1 ... N
)  e.  Fin  /\  { n  e.  ( 1 ... N )  | 
A. p  e.  ( Prime  \  ( 1 ... K ) )  -.  p  ||  n }  C_  ( 1 ... N ) )  ->  { n  e.  (
1 ... N )  | 
A. p  e.  ( Prime  \  ( 1 ... K ) )  -.  p  ||  n }  e.  Fin )
173171, 6, 172mp2an 686 . . . . . 6  |-  { n  e.  ( 1 ... N
)  |  A. p  e.  ( Prime  \  (
1 ... K ) )  -.  p  ||  n }  e.  Fin
1745, 173eqeltri 2545 . . . . 5  |-  M  e. 
Fin
175 ssrab2 3500 . . . . 5  |-  { x  e.  M  |  ( Q `  x )  =  1 }  C_  M
176 ssfi 7810 . . . . 5  |-  ( ( M  e.  Fin  /\  { x  e.  M  | 
( Q `  x
)  =  1 } 
C_  M )  ->  { x  e.  M  |  ( Q `  x )  =  1 }  e.  Fin )
177174, 175, 176mp2an 686 . . . 4  |-  { x  e.  M  |  ( Q `  x )  =  1 }  e.  Fin
178 prfi 7864 . . . . 5  |-  { 0 ,  1 }  e.  Fin
179 fzfid 12224 . . . . 5  |-  ( ph  ->  ( 1 ... K
)  e.  Fin )
180 mapfi 7888 . . . . 5  |-  ( ( { 0 ,  1 }  e.  Fin  /\  ( 1 ... K
)  e.  Fin )  ->  ( { 0 ,  1 }  ^m  (
1 ... K ) )  e.  Fin )
181178, 179, 180sylancr 676 . . . 4  |-  ( ph  ->  ( { 0 ,  1 }  ^m  (
1 ... K ) )  e.  Fin )
182 hashdom 12596 . . . 4  |-  ( ( { x  e.  M  |  ( Q `  x )  =  1 }  e.  Fin  /\  ( { 0 ,  1 }  ^m  ( 1 ... K ) )  e.  Fin )  -> 
( ( # `  {
x  e.  M  | 
( Q `  x
)  =  1 } )  <_  ( # `  ( { 0 ,  1 }  ^m  ( 1 ... K ) ) )  <->  { x  e.  M  |  ( Q `  x )  =  1 }  ~<_  ( { 0 ,  1 }  ^m  ( 1 ... K
) ) ) )
183177, 181, 182sylancr 676 . . 3  |-  ( ph  ->  ( ( # `  {
x  e.  M  | 
( Q `  x
)  =  1 } )  <_  ( # `  ( { 0 ,  1 }  ^m  ( 1 ... K ) ) )  <->  { x  e.  M  |  ( Q `  x )  =  1 }  ~<_  ( { 0 ,  1 }  ^m  ( 1 ... K
) ) ) )
184170, 183mpbird 240 . 2  |-  ( ph  ->  ( # `  {
x  e.  M  | 
( Q `  x
)  =  1 } )  <_  ( # `  ( { 0 ,  1 }  ^m  ( 1 ... K ) ) ) )
185 hashmap 12648 . . . 4  |-  ( ( { 0 ,  1 }  e.  Fin  /\  ( 1 ... K
)  e.  Fin )  ->  ( # `  ( { 0 ,  1 }  ^m  ( 1 ... K ) ) )  =  ( (
# `  { 0 ,  1 } ) ^ ( # `  (
1 ... K ) ) ) )
186178, 179, 185sylancr 676 . . 3  |-  ( ph  ->  ( # `  ( { 0 ,  1 }  ^m  ( 1 ... K ) ) )  =  ( (
# `  { 0 ,  1 } ) ^ ( # `  (
1 ... K ) ) ) )
187 0ne1 10699 . . . . . 6  |-  0  =/=  1
188 0cn 9653 . . . . . . 7  |-  0  e.  CC
189 ax-1cn 9615 . . . . . . 7  |-  1  e.  CC
190 hashprg 12610 . . . . . . 7  |-  ( ( 0  e.  CC  /\  1  e.  CC )  ->  ( 0  =/=  1  <->  (
# `  { 0 ,  1 } )  =  2 ) )
191188, 189, 190mp2an 686 . . . . . 6  |-  ( 0  =/=  1  <->  ( # `  {
0 ,  1 } )  =  2 )
192187, 191mpbi 213 . . . . 5  |-  ( # `  { 0 ,  1 } )  =  2
193192a1i 11 . . . 4  |-  ( ph  ->  ( # `  {
0 ,  1 } )  =  2 )
194 prmrec.2 . . . . . 6  |-  ( ph  ->  K  e.  NN )
195194nnnn0d 10949 . . . . 5  |-  ( ph  ->  K  e.  NN0 )
196 hashfz1 12567 . . . . 5  |-  ( K  e.  NN0  ->  ( # `  ( 1 ... K
) )  =  K )
197195, 196syl 17 . . . 4  |-  ( ph  ->  ( # `  (
1 ... K ) )  =  K )
198193, 197oveq12d 6326 . . 3  |-  ( ph  ->  ( ( # `  {
0 ,  1 } ) ^ ( # `  ( 1 ... K
) ) )  =  ( 2 ^ K
) )
199186, 198eqtrd 2505 . 2  |-  ( ph  ->  ( # `  ( { 0 ,  1 }  ^m  ( 1 ... K ) ) )  =  ( 2 ^ K ) )
200184, 199breqtrd 4420 1  |-  ( ph  ->  ( # `  {
x  e.  M  | 
( Q `  x
)  =  1 } )  <_  ( 2 ^ K ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   {crab 2760   _Vcvv 3031    \ cdif 3387    u. cun 3388    i^i cin 3389    C_ wss 3390   ifcif 3872   {cpr 3961   class class class wbr 4395    |-> cmpt 4454    Fn wfn 5584   -->wf 5585   ` cfv 5589  (class class class)co 6308    ^m cmap 7490    ~<_ cdom 7585   Fincfn 7587   supcsup 7972   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    < clt 9693    <_ cle 9694    / cdiv 10291   NNcn 10631   2c2 10681   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   ...cfz 11810   ^cexp 12310   #chash 12553    || cdvds 14382   Primecprime 14701    pCnt cpc 14865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-q 11288  df-rp 11326  df-fz 11811  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-dvds 14383  df-gcd 14548  df-prm 14702  df-pc 14866
This theorem is referenced by:  prmreclem3  14941
  Copyright terms: Public domain W3C validator