MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem1 Structured version   Unicode version

Theorem prmreclem1 13969
Description: Lemma for prmrec 13975. Properties of the "square part" function, which extracts the  m of the decomposition  N  =  r
m ^ 2, with  m maximal and  r squarefree. (Contributed by Mario Carneiro, 5-Aug-2014.)
Hypothesis
Ref Expression
prmreclem1.1  |-  Q  =  ( n  e.  NN  |->  sup ( { r  e.  NN  |  ( r ^ 2 )  ||  n } ,  RR ,  <  ) )
Assertion
Ref Expression
prmreclem1  |-  ( N  e.  NN  ->  (
( Q `  N
)  e.  NN  /\  ( ( Q `  N ) ^ 2 )  ||  N  /\  ( K  e.  ( ZZ>=
`  2 )  ->  -.  ( K ^ 2 )  ||  ( N  /  ( ( Q `
 N ) ^
2 ) ) ) ) )
Distinct variable groups:    K, r    n, r, N    Q, r
Allowed substitution hints:    Q( n)    K( n)

Proof of Theorem prmreclem1
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3432 . . 3  |-  { r  e.  NN  |  ( r ^ 2 ) 
||  N }  C_  NN
2 breq2 4291 . . . . . . 7  |-  ( n  =  N  ->  (
( r ^ 2 )  ||  n  <->  ( r ^ 2 )  ||  N ) )
32rabbidv 2959 . . . . . 6  |-  ( n  =  N  ->  { r  e.  NN  |  ( r ^ 2 ) 
||  n }  =  { r  e.  NN  |  ( r ^
2 )  ||  N } )
43supeq1d 7688 . . . . 5  |-  ( n  =  N  ->  sup ( { r  e.  NN  |  ( r ^
2 )  ||  n } ,  RR ,  <  )  =  sup ( { r  e.  NN  |  ( r ^
2 )  ||  N } ,  RR ,  <  ) )
5 prmreclem1.1 . . . . 5  |-  Q  =  ( n  e.  NN  |->  sup ( { r  e.  NN  |  ( r ^ 2 )  ||  n } ,  RR ,  <  ) )
6 ltso 9447 . . . . . 6  |-  <  Or  RR
76supex 7705 . . . . 5  |-  sup ( { r  e.  NN  |  ( r ^
2 )  ||  N } ,  RR ,  <  )  e.  _V
84, 5, 7fvmpt 5769 . . . 4  |-  ( N  e.  NN  ->  ( Q `  N )  =  sup ( { r  e.  NN  |  ( r ^ 2 ) 
||  N } ,  RR ,  <  ) )
9 nnssz 10658 . . . . . . 7  |-  NN  C_  ZZ
101, 9sstri 3360 . . . . . 6  |-  { r  e.  NN  |  ( r ^ 2 ) 
||  N }  C_  ZZ
1110a1i 11 . . . . 5  |-  ( N  e.  NN  ->  { r  e.  NN  |  ( r ^ 2 ) 
||  N }  C_  ZZ )
12 1nn 10325 . . . . . . . 8  |-  1  e.  NN
1312a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  1  e.  NN )
14 nnz 10660 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  ZZ )
15 1dvds 13539 . . . . . . . 8  |-  ( N  e.  ZZ  ->  1  ||  N )
1614, 15syl 16 . . . . . . 7  |-  ( N  e.  NN  ->  1  ||  N )
17 oveq1 6093 . . . . . . . . . 10  |-  ( r  =  1  ->  (
r ^ 2 )  =  ( 1 ^ 2 ) )
18 sq1 11952 . . . . . . . . . 10  |-  ( 1 ^ 2 )  =  1
1917, 18syl6eq 2486 . . . . . . . . 9  |-  ( r  =  1  ->  (
r ^ 2 )  =  1 )
2019breq1d 4297 . . . . . . . 8  |-  ( r  =  1  ->  (
( r ^ 2 )  ||  N  <->  1  ||  N ) )
2120elrab 3112 . . . . . . 7  |-  ( 1  e.  { r  e.  NN  |  ( r ^ 2 )  ||  N }  <->  ( 1  e.  NN  /\  1  ||  N ) )
2213, 16, 21sylanbrc 664 . . . . . 6  |-  ( N  e.  NN  ->  1  e.  { r  e.  NN  |  ( r ^
2 )  ||  N } )
23 ne0i 3638 . . . . . 6  |-  ( 1  e.  { r  e.  NN  |  ( r ^ 2 )  ||  N }  ->  { r  e.  NN  |  ( r ^ 2 ) 
||  N }  =/=  (/) )
2422, 23syl 16 . . . . 5  |-  ( N  e.  NN  ->  { r  e.  NN  |  ( r ^ 2 ) 
||  N }  =/=  (/) )
25 nnz 10660 . . . . . . . . . . 11  |-  ( z  e.  NN  ->  z  e.  ZZ )
26 zsqcl 11928 . . . . . . . . . . 11  |-  ( z  e.  ZZ  ->  (
z ^ 2 )  e.  ZZ )
2725, 26syl 16 . . . . . . . . . 10  |-  ( z  e.  NN  ->  (
z ^ 2 )  e.  ZZ )
28 id 22 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  NN )
29 dvdsle 13570 . . . . . . . . . 10  |-  ( ( ( z ^ 2 )  e.  ZZ  /\  N  e.  NN )  ->  ( ( z ^
2 )  ||  N  ->  ( z ^ 2 )  <_  N )
)
3027, 28, 29syl2anr 478 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  z  e.  NN )  ->  ( ( z ^
2 )  ||  N  ->  ( z ^ 2 )  <_  N )
)
31 nnlesq 11961 . . . . . . . . . . 11  |-  ( z  e.  NN  ->  z  <_  ( z ^ 2 ) )
3231adantl 466 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  z  e.  NN )  ->  z  <_  ( z ^ 2 ) )
33 nnre 10321 . . . . . . . . . . . 12  |-  ( z  e.  NN  ->  z  e.  RR )
3433adantl 466 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  z  e.  NN )  ->  z  e.  RR )
3534resqcld 12026 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  z  e.  NN )  ->  ( z ^ 2 )  e.  RR )
36 nnre 10321 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  RR )
3736adantr 465 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  z  e.  NN )  ->  N  e.  RR )
38 letr 9460 . . . . . . . . . . 11  |-  ( ( z  e.  RR  /\  ( z ^ 2 )  e.  RR  /\  N  e.  RR )  ->  ( ( z  <_ 
( z ^ 2 )  /\  ( z ^ 2 )  <_  N )  ->  z  <_  N ) )
3934, 35, 37, 38syl3anc 1218 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  z  e.  NN )  ->  ( ( z  <_ 
( z ^ 2 )  /\  ( z ^ 2 )  <_  N )  ->  z  <_  N ) )
4032, 39mpand 675 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  z  e.  NN )  ->  ( ( z ^
2 )  <_  N  ->  z  <_  N )
)
4130, 40syld 44 . . . . . . . 8  |-  ( ( N  e.  NN  /\  z  e.  NN )  ->  ( ( z ^
2 )  ||  N  ->  z  <_  N )
)
4241ralrimiva 2794 . . . . . . 7  |-  ( N  e.  NN  ->  A. z  e.  NN  ( ( z ^ 2 )  ||  N  ->  z  <_  N
) )
43 oveq1 6093 . . . . . . . . 9  |-  ( r  =  z  ->  (
r ^ 2 )  =  ( z ^
2 ) )
4443breq1d 4297 . . . . . . . 8  |-  ( r  =  z  ->  (
( r ^ 2 )  ||  N  <->  ( z ^ 2 )  ||  N ) )
4544ralrab 3116 . . . . . . 7  |-  ( A. z  e.  { r  e.  NN  |  ( r ^ 2 )  ||  N } z  <_  N  <->  A. z  e.  NN  (
( z ^ 2 )  ||  N  -> 
z  <_  N )
)
4642, 45sylibr 212 . . . . . 6  |-  ( N  e.  NN  ->  A. z  e.  { r  e.  NN  |  ( r ^
2 )  ||  N } z  <_  N
)
47 breq2 4291 . . . . . . . 8  |-  ( x  =  N  ->  (
z  <_  x  <->  z  <_  N ) )
4847ralbidv 2730 . . . . . . 7  |-  ( x  =  N  ->  ( A. z  e.  { r  e.  NN  |  ( r ^ 2 ) 
||  N } z  <_  x  <->  A. z  e.  { r  e.  NN  |  ( r ^
2 )  ||  N } z  <_  N
) )
4948rspcev 3068 . . . . . 6  |-  ( ( N  e.  ZZ  /\  A. z  e.  { r  e.  NN  |  ( r ^ 2 ) 
||  N } z  <_  N )  ->  E. x  e.  ZZ  A. z  e.  { r  e.  NN  |  ( r ^ 2 ) 
||  N } z  <_  x )
5014, 46, 49syl2anc 661 . . . . 5  |-  ( N  e.  NN  ->  E. x  e.  ZZ  A. z  e. 
{ r  e.  NN  |  ( r ^
2 )  ||  N } z  <_  x
)
51 suprzcl2 10937 . . . . 5  |-  ( ( { r  e.  NN  |  ( r ^
2 )  ||  N }  C_  ZZ  /\  {
r  e.  NN  | 
( r ^ 2 )  ||  N }  =/=  (/)  /\  E. x  e.  ZZ  A. z  e. 
{ r  e.  NN  |  ( r ^
2 )  ||  N } z  <_  x
)  ->  sup ( { r  e.  NN  |  ( r ^
2 )  ||  N } ,  RR ,  <  )  e.  { r  e.  NN  |  ( r ^ 2 ) 
||  N } )
5211, 24, 50, 51syl3anc 1218 . . . 4  |-  ( N  e.  NN  ->  sup ( { r  e.  NN  |  ( r ^
2 )  ||  N } ,  RR ,  <  )  e.  { r  e.  NN  |  ( r ^ 2 ) 
||  N } )
538, 52eqeltrd 2512 . . 3  |-  ( N  e.  NN  ->  ( Q `  N )  e.  { r  e.  NN  |  ( r ^
2 )  ||  N } )
541, 53sseldi 3349 . 2  |-  ( N  e.  NN  ->  ( Q `  N )  e.  NN )
55 oveq1 6093 . . . . . 6  |-  ( z  =  ( Q `  N )  ->  (
z ^ 2 )  =  ( ( Q `
 N ) ^
2 ) )
5655breq1d 4297 . . . . 5  |-  ( z  =  ( Q `  N )  ->  (
( z ^ 2 )  ||  N  <->  ( ( Q `  N ) ^ 2 )  ||  N ) )
5744cbvrabv 2966 . . . . 5  |-  { r  e.  NN  |  ( r ^ 2 ) 
||  N }  =  { z  e.  NN  |  ( z ^
2 )  ||  N }
5856, 57elrab2 3114 . . . 4  |-  ( ( Q `  N )  e.  { r  e.  NN  |  ( r ^ 2 )  ||  N }  <->  ( ( Q `
 N )  e.  NN  /\  ( ( Q `  N ) ^ 2 )  ||  N ) )
5953, 58sylib 196 . . 3  |-  ( N  e.  NN  ->  (
( Q `  N
)  e.  NN  /\  ( ( Q `  N ) ^ 2 )  ||  N ) )
6059simprd 463 . 2  |-  ( N  e.  NN  ->  (
( Q `  N
) ^ 2 ) 
||  N )
6154adantr 465 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
( Q `  N
)  e.  NN )
6261nncnd 10330 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
( Q `  N
)  e.  CC )
6362mulid1d 9395 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
( ( Q `  N )  x.  1 )  =  ( Q `
 N ) )
64 eluz2b2 10919 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  2
)  <->  ( K  e.  NN  /\  1  < 
K ) )
6564simprbi 464 . . . . . . . 8  |-  ( K  e.  ( ZZ>= `  2
)  ->  1  <  K )
6665adantl 466 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
1  <  K )
67 1red 9393 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
1  e.  RR )
6864simplbi 460 . . . . . . . . . 10  |-  ( K  e.  ( ZZ>= `  2
)  ->  K  e.  NN )
6968adantl 466 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  ->  K  e.  NN )
7069nnred 10329 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  ->  K  e.  RR )
7161nnred 10329 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
( Q `  N
)  e.  RR )
7261nngt0d 10357 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
0  <  ( Q `  N ) )
73 ltmul2 10172 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  K  e.  RR  /\  (
( Q `  N
)  e.  RR  /\  0  <  ( Q `  N ) ) )  ->  ( 1  < 
K  <->  ( ( Q `
 N )  x.  1 )  <  (
( Q `  N
)  x.  K ) ) )
7467, 70, 71, 72, 73syl112anc 1222 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
( 1  <  K  <->  ( ( Q `  N
)  x.  1 )  <  ( ( Q `
 N )  x.  K ) ) )
7566, 74mpbid 210 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
( ( Q `  N )  x.  1 )  <  ( ( Q `  N )  x.  K ) )
7663, 75eqbrtrrd 4309 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
( Q `  N
)  <  ( ( Q `  N )  x.  K ) )
77 nnmulcl 10337 . . . . . . . 8  |-  ( ( ( Q `  N
)  e.  NN  /\  K  e.  NN )  ->  ( ( Q `  N )  x.  K
)  e.  NN )
7854, 68, 77syl2an 477 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
( ( Q `  N )  x.  K
)  e.  NN )
7978nnred 10329 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
( ( Q `  N )  x.  K
)  e.  RR )
8071, 79ltnled 9513 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
( ( Q `  N )  <  (
( Q `  N
)  x.  K )  <->  -.  ( ( Q `  N )  x.  K
)  <_  ( Q `  N ) ) )
8176, 80mpbid 210 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  ->  -.  ( ( Q `  N )  x.  K
)  <_  ( Q `  N ) )
8210a1i 11 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  ->  { r  e.  NN  |  ( r ^
2 )  ||  N }  C_  ZZ )
8350ad2antrr 725 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  ->  E. x  e.  ZZ  A. z  e.  { r  e.  NN  |  ( r ^ 2 ) 
||  N } z  <_  x )
8478adantr 465 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( Q `  N )  x.  K
)  e.  NN )
85 simpr 461 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( K ^ 2 )  ||  ( N  /  ( ( Q `
 N ) ^
2 ) ) )
8669adantr 465 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  ->  K  e.  NN )
8786nnsqcld 12020 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( K ^ 2 )  e.  NN )
88 nnz 10660 . . . . . . . . . . 11  |-  ( ( K ^ 2 )  e.  NN  ->  ( K ^ 2 )  e.  ZZ )
8987, 88syl 16 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( K ^ 2 )  e.  ZZ )
9054nnsqcld 12020 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( Q `  N
) ^ 2 )  e.  NN )
919, 90sseldi 3349 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( Q `  N
) ^ 2 )  e.  ZZ )
9290nnne0d 10358 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( Q `  N
) ^ 2 )  =/=  0 )
93 dvdsval2 13530 . . . . . . . . . . . . 13  |-  ( ( ( ( Q `  N ) ^ 2 )  e.  ZZ  /\  ( ( Q `  N ) ^ 2 )  =/=  0  /\  N  e.  ZZ )  ->  ( ( ( Q `  N ) ^ 2 )  ||  N 
<->  ( N  /  (
( Q `  N
) ^ 2 ) )  e.  ZZ ) )
9491, 92, 14, 93syl3anc 1218 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( Q `  N ) ^ 2 )  ||  N  <->  ( N  /  ( ( Q `
 N ) ^
2 ) )  e.  ZZ ) )
9560, 94mpbid 210 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  /  ( ( Q `
 N ) ^
2 ) )  e.  ZZ )
9695ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( N  /  (
( Q `  N
) ^ 2 ) )  e.  ZZ )
9791ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( Q `  N ) ^ 2 )  e.  ZZ )
98 dvdscmul 13551 . . . . . . . . . 10  |-  ( ( ( K ^ 2 )  e.  ZZ  /\  ( N  /  (
( Q `  N
) ^ 2 ) )  e.  ZZ  /\  ( ( Q `  N ) ^ 2 )  e.  ZZ )  ->  ( ( K ^ 2 )  ||  ( N  /  (
( Q `  N
) ^ 2 ) )  ->  ( (
( Q `  N
) ^ 2 )  x.  ( K ^
2 ) )  ||  ( ( ( Q `
 N ) ^
2 )  x.  ( N  /  ( ( Q `
 N ) ^
2 ) ) ) ) )
9989, 96, 97, 98syl3anc 1218 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( K ^
2 )  ||  ( N  /  ( ( Q `
 N ) ^
2 ) )  -> 
( ( ( Q `
 N ) ^
2 )  x.  ( K ^ 2 ) ) 
||  ( ( ( Q `  N ) ^ 2 )  x.  ( N  /  (
( Q `  N
) ^ 2 ) ) ) ) )
10085, 99mpd 15 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( ( Q `
 N ) ^
2 )  x.  ( K ^ 2 ) ) 
||  ( ( ( Q `  N ) ^ 2 )  x.  ( N  /  (
( Q `  N
) ^ 2 ) ) ) )
10162adantr 465 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( Q `  N
)  e.  CC )
10286nncnd 10330 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  ->  K  e.  CC )
103101, 102sqmuld 12012 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( ( Q `
 N )  x.  K ) ^ 2 )  =  ( ( ( Q `  N
) ^ 2 )  x.  ( K ^
2 ) ) )
104103eqcomd 2443 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( ( Q `
 N ) ^
2 )  x.  ( K ^ 2 ) )  =  ( ( ( Q `  N )  x.  K ) ^
2 ) )
105 nncn 10322 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  CC )
106105ad2antrr 725 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  ->  N  e.  CC )
10790ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( Q `  N ) ^ 2 )  e.  NN )
108107nncnd 10330 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( Q `  N ) ^ 2 )  e.  CC )
10992ad2antrr 725 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( Q `  N ) ^ 2 )  =/=  0 )
110106, 108, 109divcan2d 10101 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( ( Q `
 N ) ^
2 )  x.  ( N  /  ( ( Q `
 N ) ^
2 ) ) )  =  N )
111100, 104, 1103brtr3d 4316 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( ( Q `
 N )  x.  K ) ^ 2 )  ||  N )
112 oveq1 6093 . . . . . . . . 9  |-  ( r  =  ( ( Q `
 N )  x.  K )  ->  (
r ^ 2 )  =  ( ( ( Q `  N )  x.  K ) ^
2 ) )
113112breq1d 4297 . . . . . . . 8  |-  ( r  =  ( ( Q `
 N )  x.  K )  ->  (
( r ^ 2 )  ||  N  <->  ( (
( Q `  N
)  x.  K ) ^ 2 )  ||  N ) )
114113elrab 3112 . . . . . . 7  |-  ( ( ( Q `  N
)  x.  K )  e.  { r  e.  NN  |  ( r ^ 2 )  ||  N }  <->  ( ( ( Q `  N )  x.  K )  e.  NN  /\  ( ( ( Q `  N
)  x.  K ) ^ 2 )  ||  N ) )
11584, 111, 114sylanbrc 664 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( Q `  N )  x.  K
)  e.  { r  e.  NN  |  ( r ^ 2 ) 
||  N } )
116 suprzub 10938 . . . . . 6  |-  ( ( { r  e.  NN  |  ( r ^
2 )  ||  N }  C_  ZZ  /\  E. x  e.  ZZ  A. z  e.  { r  e.  NN  |  ( r ^
2 )  ||  N } z  <_  x  /\  ( ( Q `  N )  x.  K
)  e.  { r  e.  NN  |  ( r ^ 2 ) 
||  N } )  ->  ( ( Q `
 N )  x.  K )  <_  sup ( { r  e.  NN  |  ( r ^
2 )  ||  N } ,  RR ,  <  ) )
11782, 83, 115, 116syl3anc 1218 . . . . 5  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( Q `  N )  x.  K
)  <_  sup ( { r  e.  NN  |  ( r ^
2 )  ||  N } ,  RR ,  <  ) )
1188ad2antrr 725 . . . . 5  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( Q `  N
)  =  sup ( { r  e.  NN  |  ( r ^
2 )  ||  N } ,  RR ,  <  ) )
119117, 118breqtrrd 4313 . . . 4  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( Q `  N )  x.  K
)  <_  ( Q `  N ) )
12081, 119mtand 659 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  ->  -.  ( K ^ 2 )  ||  ( N  /  ( ( Q `
 N ) ^
2 ) ) )
121120ex 434 . 2  |-  ( N  e.  NN  ->  ( K  e.  ( ZZ>= ` 
2 )  ->  -.  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) ) )
12254, 60, 1213jca 1168 1  |-  ( N  e.  NN  ->  (
( Q `  N
)  e.  NN  /\  ( ( Q `  N ) ^ 2 )  ||  N  /\  ( K  e.  ( ZZ>=
`  2 )  ->  -.  ( K ^ 2 )  ||  ( N  /  ( ( Q `
 N ) ^
2 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   A.wral 2710   E.wrex 2711   {crab 2714    C_ wss 3323   (/)c0 3632   class class class wbr 4287    e. cmpt 4345   ` cfv 5413  (class class class)co 6086   supcsup 7682   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    x. cmul 9279    < clt 9410    <_ cle 9411    / cdiv 9985   NNcn 10314   2c2 10363   ZZcz 10638   ZZ>=cuz 10853   ^cexp 11857    || cdivides 13527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-n0 10572  df-z 10639  df-uz 10854  df-seq 11799  df-exp 11858  df-dvds 13528
This theorem is referenced by:  prmreclem2  13970  prmreclem3  13971
  Copyright terms: Public domain W3C validator