MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem1 Structured version   Unicode version

Theorem prmreclem1 14296
Description: Lemma for prmrec 14302. Properties of the "square part" function, which extracts the  m of the decomposition  N  =  r
m ^ 2, with  m maximal and  r squarefree. (Contributed by Mario Carneiro, 5-Aug-2014.)
Hypothesis
Ref Expression
prmreclem1.1  |-  Q  =  ( n  e.  NN  |->  sup ( { r  e.  NN  |  ( r ^ 2 )  ||  n } ,  RR ,  <  ) )
Assertion
Ref Expression
prmreclem1  |-  ( N  e.  NN  ->  (
( Q `  N
)  e.  NN  /\  ( ( Q `  N ) ^ 2 )  ||  N  /\  ( K  e.  ( ZZ>=
`  2 )  ->  -.  ( K ^ 2 )  ||  ( N  /  ( ( Q `
 N ) ^
2 ) ) ) ) )
Distinct variable groups:    K, r    n, r, N    Q, r
Allowed substitution hints:    Q( n)    K( n)

Proof of Theorem prmreclem1
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3585 . . 3  |-  { r  e.  NN  |  ( r ^ 2 ) 
||  N }  C_  NN
2 breq2 4451 . . . . . . 7  |-  ( n  =  N  ->  (
( r ^ 2 )  ||  n  <->  ( r ^ 2 )  ||  N ) )
32rabbidv 3105 . . . . . 6  |-  ( n  =  N  ->  { r  e.  NN  |  ( r ^ 2 ) 
||  n }  =  { r  e.  NN  |  ( r ^
2 )  ||  N } )
43supeq1d 7907 . . . . 5  |-  ( n  =  N  ->  sup ( { r  e.  NN  |  ( r ^
2 )  ||  n } ,  RR ,  <  )  =  sup ( { r  e.  NN  |  ( r ^
2 )  ||  N } ,  RR ,  <  ) )
5 prmreclem1.1 . . . . 5  |-  Q  =  ( n  e.  NN  |->  sup ( { r  e.  NN  |  ( r ^ 2 )  ||  n } ,  RR ,  <  ) )
6 ltso 9666 . . . . . 6  |-  <  Or  RR
76supex 7924 . . . . 5  |-  sup ( { r  e.  NN  |  ( r ^
2 )  ||  N } ,  RR ,  <  )  e.  _V
84, 5, 7fvmpt 5951 . . . 4  |-  ( N  e.  NN  ->  ( Q `  N )  =  sup ( { r  e.  NN  |  ( r ^ 2 ) 
||  N } ,  RR ,  <  ) )
9 nnssz 10885 . . . . . . 7  |-  NN  C_  ZZ
101, 9sstri 3513 . . . . . 6  |-  { r  e.  NN  |  ( r ^ 2 ) 
||  N }  C_  ZZ
1110a1i 11 . . . . 5  |-  ( N  e.  NN  ->  { r  e.  NN  |  ( r ^ 2 ) 
||  N }  C_  ZZ )
12 1nn 10548 . . . . . . . 8  |-  1  e.  NN
1312a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  1  e.  NN )
14 nnz 10887 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  ZZ )
15 1dvds 13862 . . . . . . . 8  |-  ( N  e.  ZZ  ->  1  ||  N )
1614, 15syl 16 . . . . . . 7  |-  ( N  e.  NN  ->  1  ||  N )
17 oveq1 6292 . . . . . . . . . 10  |-  ( r  =  1  ->  (
r ^ 2 )  =  ( 1 ^ 2 ) )
18 sq1 12231 . . . . . . . . . 10  |-  ( 1 ^ 2 )  =  1
1917, 18syl6eq 2524 . . . . . . . . 9  |-  ( r  =  1  ->  (
r ^ 2 )  =  1 )
2019breq1d 4457 . . . . . . . 8  |-  ( r  =  1  ->  (
( r ^ 2 )  ||  N  <->  1  ||  N ) )
2120elrab 3261 . . . . . . 7  |-  ( 1  e.  { r  e.  NN  |  ( r ^ 2 )  ||  N }  <->  ( 1  e.  NN  /\  1  ||  N ) )
2213, 16, 21sylanbrc 664 . . . . . 6  |-  ( N  e.  NN  ->  1  e.  { r  e.  NN  |  ( r ^
2 )  ||  N } )
23 ne0i 3791 . . . . . 6  |-  ( 1  e.  { r  e.  NN  |  ( r ^ 2 )  ||  N }  ->  { r  e.  NN  |  ( r ^ 2 ) 
||  N }  =/=  (/) )
2422, 23syl 16 . . . . 5  |-  ( N  e.  NN  ->  { r  e.  NN  |  ( r ^ 2 ) 
||  N }  =/=  (/) )
25 nnz 10887 . . . . . . . . . . 11  |-  ( z  e.  NN  ->  z  e.  ZZ )
26 zsqcl 12207 . . . . . . . . . . 11  |-  ( z  e.  ZZ  ->  (
z ^ 2 )  e.  ZZ )
2725, 26syl 16 . . . . . . . . . 10  |-  ( z  e.  NN  ->  (
z ^ 2 )  e.  ZZ )
28 id 22 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  NN )
29 dvdsle 13893 . . . . . . . . . 10  |-  ( ( ( z ^ 2 )  e.  ZZ  /\  N  e.  NN )  ->  ( ( z ^
2 )  ||  N  ->  ( z ^ 2 )  <_  N )
)
3027, 28, 29syl2anr 478 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  z  e.  NN )  ->  ( ( z ^
2 )  ||  N  ->  ( z ^ 2 )  <_  N )
)
31 nnlesq 12240 . . . . . . . . . . 11  |-  ( z  e.  NN  ->  z  <_  ( z ^ 2 ) )
3231adantl 466 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  z  e.  NN )  ->  z  <_  ( z ^ 2 ) )
33 nnre 10544 . . . . . . . . . . . 12  |-  ( z  e.  NN  ->  z  e.  RR )
3433adantl 466 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  z  e.  NN )  ->  z  e.  RR )
3534resqcld 12305 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  z  e.  NN )  ->  ( z ^ 2 )  e.  RR )
36 nnre 10544 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  RR )
3736adantr 465 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  z  e.  NN )  ->  N  e.  RR )
38 letr 9679 . . . . . . . . . . 11  |-  ( ( z  e.  RR  /\  ( z ^ 2 )  e.  RR  /\  N  e.  RR )  ->  ( ( z  <_ 
( z ^ 2 )  /\  ( z ^ 2 )  <_  N )  ->  z  <_  N ) )
3934, 35, 37, 38syl3anc 1228 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  z  e.  NN )  ->  ( ( z  <_ 
( z ^ 2 )  /\  ( z ^ 2 )  <_  N )  ->  z  <_  N ) )
4032, 39mpand 675 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  z  e.  NN )  ->  ( ( z ^
2 )  <_  N  ->  z  <_  N )
)
4130, 40syld 44 . . . . . . . 8  |-  ( ( N  e.  NN  /\  z  e.  NN )  ->  ( ( z ^
2 )  ||  N  ->  z  <_  N )
)
4241ralrimiva 2878 . . . . . . 7  |-  ( N  e.  NN  ->  A. z  e.  NN  ( ( z ^ 2 )  ||  N  ->  z  <_  N
) )
43 oveq1 6292 . . . . . . . . 9  |-  ( r  =  z  ->  (
r ^ 2 )  =  ( z ^
2 ) )
4443breq1d 4457 . . . . . . . 8  |-  ( r  =  z  ->  (
( r ^ 2 )  ||  N  <->  ( z ^ 2 )  ||  N ) )
4544ralrab 3265 . . . . . . 7  |-  ( A. z  e.  { r  e.  NN  |  ( r ^ 2 )  ||  N } z  <_  N  <->  A. z  e.  NN  (
( z ^ 2 )  ||  N  -> 
z  <_  N )
)
4642, 45sylibr 212 . . . . . 6  |-  ( N  e.  NN  ->  A. z  e.  { r  e.  NN  |  ( r ^
2 )  ||  N } z  <_  N
)
47 breq2 4451 . . . . . . . 8  |-  ( x  =  N  ->  (
z  <_  x  <->  z  <_  N ) )
4847ralbidv 2903 . . . . . . 7  |-  ( x  =  N  ->  ( A. z  e.  { r  e.  NN  |  ( r ^ 2 ) 
||  N } z  <_  x  <->  A. z  e.  { r  e.  NN  |  ( r ^
2 )  ||  N } z  <_  N
) )
4948rspcev 3214 . . . . . 6  |-  ( ( N  e.  ZZ  /\  A. z  e.  { r  e.  NN  |  ( r ^ 2 ) 
||  N } z  <_  N )  ->  E. x  e.  ZZ  A. z  e.  { r  e.  NN  |  ( r ^ 2 ) 
||  N } z  <_  x )
5014, 46, 49syl2anc 661 . . . . 5  |-  ( N  e.  NN  ->  E. x  e.  ZZ  A. z  e. 
{ r  e.  NN  |  ( r ^
2 )  ||  N } z  <_  x
)
51 suprzcl2 11173 . . . . 5  |-  ( ( { r  e.  NN  |  ( r ^
2 )  ||  N }  C_  ZZ  /\  {
r  e.  NN  | 
( r ^ 2 )  ||  N }  =/=  (/)  /\  E. x  e.  ZZ  A. z  e. 
{ r  e.  NN  |  ( r ^
2 )  ||  N } z  <_  x
)  ->  sup ( { r  e.  NN  |  ( r ^
2 )  ||  N } ,  RR ,  <  )  e.  { r  e.  NN  |  ( r ^ 2 ) 
||  N } )
5211, 24, 50, 51syl3anc 1228 . . . 4  |-  ( N  e.  NN  ->  sup ( { r  e.  NN  |  ( r ^
2 )  ||  N } ,  RR ,  <  )  e.  { r  e.  NN  |  ( r ^ 2 ) 
||  N } )
538, 52eqeltrd 2555 . . 3  |-  ( N  e.  NN  ->  ( Q `  N )  e.  { r  e.  NN  |  ( r ^
2 )  ||  N } )
541, 53sseldi 3502 . 2  |-  ( N  e.  NN  ->  ( Q `  N )  e.  NN )
55 oveq1 6292 . . . . . 6  |-  ( z  =  ( Q `  N )  ->  (
z ^ 2 )  =  ( ( Q `
 N ) ^
2 ) )
5655breq1d 4457 . . . . 5  |-  ( z  =  ( Q `  N )  ->  (
( z ^ 2 )  ||  N  <->  ( ( Q `  N ) ^ 2 )  ||  N ) )
5744cbvrabv 3112 . . . . 5  |-  { r  e.  NN  |  ( r ^ 2 ) 
||  N }  =  { z  e.  NN  |  ( z ^
2 )  ||  N }
5856, 57elrab2 3263 . . . 4  |-  ( ( Q `  N )  e.  { r  e.  NN  |  ( r ^ 2 )  ||  N }  <->  ( ( Q `
 N )  e.  NN  /\  ( ( Q `  N ) ^ 2 )  ||  N ) )
5953, 58sylib 196 . . 3  |-  ( N  e.  NN  ->  (
( Q `  N
)  e.  NN  /\  ( ( Q `  N ) ^ 2 )  ||  N ) )
6059simprd 463 . 2  |-  ( N  e.  NN  ->  (
( Q `  N
) ^ 2 ) 
||  N )
6154adantr 465 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
( Q `  N
)  e.  NN )
6261nncnd 10553 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
( Q `  N
)  e.  CC )
6362mulid1d 9614 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
( ( Q `  N )  x.  1 )  =  ( Q `
 N ) )
64 eluz2b2 11155 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  2
)  <->  ( K  e.  NN  /\  1  < 
K ) )
6564simprbi 464 . . . . . . . 8  |-  ( K  e.  ( ZZ>= `  2
)  ->  1  <  K )
6665adantl 466 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
1  <  K )
67 1red 9612 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
1  e.  RR )
6864simplbi 460 . . . . . . . . . 10  |-  ( K  e.  ( ZZ>= `  2
)  ->  K  e.  NN )
6968adantl 466 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  ->  K  e.  NN )
7069nnred 10552 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  ->  K  e.  RR )
7161nnred 10552 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
( Q `  N
)  e.  RR )
7261nngt0d 10580 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
0  <  ( Q `  N ) )
73 ltmul2 10394 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  K  e.  RR  /\  (
( Q `  N
)  e.  RR  /\  0  <  ( Q `  N ) ) )  ->  ( 1  < 
K  <->  ( ( Q `
 N )  x.  1 )  <  (
( Q `  N
)  x.  K ) ) )
7467, 70, 71, 72, 73syl112anc 1232 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
( 1  <  K  <->  ( ( Q `  N
)  x.  1 )  <  ( ( Q `
 N )  x.  K ) ) )
7566, 74mpbid 210 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
( ( Q `  N )  x.  1 )  <  ( ( Q `  N )  x.  K ) )
7663, 75eqbrtrrd 4469 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
( Q `  N
)  <  ( ( Q `  N )  x.  K ) )
77 nnmulcl 10560 . . . . . . . 8  |-  ( ( ( Q `  N
)  e.  NN  /\  K  e.  NN )  ->  ( ( Q `  N )  x.  K
)  e.  NN )
7854, 68, 77syl2an 477 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
( ( Q `  N )  x.  K
)  e.  NN )
7978nnred 10552 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
( ( Q `  N )  x.  K
)  e.  RR )
8071, 79ltnled 9732 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  -> 
( ( Q `  N )  <  (
( Q `  N
)  x.  K )  <->  -.  ( ( Q `  N )  x.  K
)  <_  ( Q `  N ) ) )
8176, 80mpbid 210 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  ->  -.  ( ( Q `  N )  x.  K
)  <_  ( Q `  N ) )
8210a1i 11 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  ->  { r  e.  NN  |  ( r ^
2 )  ||  N }  C_  ZZ )
8350ad2antrr 725 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  ->  E. x  e.  ZZ  A. z  e.  { r  e.  NN  |  ( r ^ 2 ) 
||  N } z  <_  x )
8478adantr 465 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( Q `  N )  x.  K
)  e.  NN )
85 simpr 461 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( K ^ 2 )  ||  ( N  /  ( ( Q `
 N ) ^
2 ) ) )
8669adantr 465 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  ->  K  e.  NN )
8786nnsqcld 12299 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( K ^ 2 )  e.  NN )
88 nnz 10887 . . . . . . . . . . 11  |-  ( ( K ^ 2 )  e.  NN  ->  ( K ^ 2 )  e.  ZZ )
8987, 88syl 16 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( K ^ 2 )  e.  ZZ )
9054nnsqcld 12299 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( Q `  N
) ^ 2 )  e.  NN )
919, 90sseldi 3502 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( Q `  N
) ^ 2 )  e.  ZZ )
9290nnne0d 10581 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( Q `  N
) ^ 2 )  =/=  0 )
93 dvdsval2 13853 . . . . . . . . . . . . 13  |-  ( ( ( ( Q `  N ) ^ 2 )  e.  ZZ  /\  ( ( Q `  N ) ^ 2 )  =/=  0  /\  N  e.  ZZ )  ->  ( ( ( Q `  N ) ^ 2 )  ||  N 
<->  ( N  /  (
( Q `  N
) ^ 2 ) )  e.  ZZ ) )
9491, 92, 14, 93syl3anc 1228 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( Q `  N ) ^ 2 )  ||  N  <->  ( N  /  ( ( Q `
 N ) ^
2 ) )  e.  ZZ ) )
9560, 94mpbid 210 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  /  ( ( Q `
 N ) ^
2 ) )  e.  ZZ )
9695ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( N  /  (
( Q `  N
) ^ 2 ) )  e.  ZZ )
9791ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( Q `  N ) ^ 2 )  e.  ZZ )
98 dvdscmul 13874 . . . . . . . . . 10  |-  ( ( ( K ^ 2 )  e.  ZZ  /\  ( N  /  (
( Q `  N
) ^ 2 ) )  e.  ZZ  /\  ( ( Q `  N ) ^ 2 )  e.  ZZ )  ->  ( ( K ^ 2 )  ||  ( N  /  (
( Q `  N
) ^ 2 ) )  ->  ( (
( Q `  N
) ^ 2 )  x.  ( K ^
2 ) )  ||  ( ( ( Q `
 N ) ^
2 )  x.  ( N  /  ( ( Q `
 N ) ^
2 ) ) ) ) )
9989, 96, 97, 98syl3anc 1228 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( K ^
2 )  ||  ( N  /  ( ( Q `
 N ) ^
2 ) )  -> 
( ( ( Q `
 N ) ^
2 )  x.  ( K ^ 2 ) ) 
||  ( ( ( Q `  N ) ^ 2 )  x.  ( N  /  (
( Q `  N
) ^ 2 ) ) ) ) )
10085, 99mpd 15 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( ( Q `
 N ) ^
2 )  x.  ( K ^ 2 ) ) 
||  ( ( ( Q `  N ) ^ 2 )  x.  ( N  /  (
( Q `  N
) ^ 2 ) ) ) )
10162adantr 465 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( Q `  N
)  e.  CC )
10286nncnd 10553 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  ->  K  e.  CC )
103101, 102sqmuld 12291 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( ( Q `
 N )  x.  K ) ^ 2 )  =  ( ( ( Q `  N
) ^ 2 )  x.  ( K ^
2 ) ) )
104103eqcomd 2475 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( ( Q `
 N ) ^
2 )  x.  ( K ^ 2 ) )  =  ( ( ( Q `  N )  x.  K ) ^
2 ) )
105 nncn 10545 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  CC )
106105ad2antrr 725 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  ->  N  e.  CC )
10790ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( Q `  N ) ^ 2 )  e.  NN )
108107nncnd 10553 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( Q `  N ) ^ 2 )  e.  CC )
10992ad2antrr 725 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( Q `  N ) ^ 2 )  =/=  0 )
110106, 108, 109divcan2d 10323 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( ( Q `
 N ) ^
2 )  x.  ( N  /  ( ( Q `
 N ) ^
2 ) ) )  =  N )
111100, 104, 1103brtr3d 4476 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( ( Q `
 N )  x.  K ) ^ 2 )  ||  N )
112 oveq1 6292 . . . . . . . . 9  |-  ( r  =  ( ( Q `
 N )  x.  K )  ->  (
r ^ 2 )  =  ( ( ( Q `  N )  x.  K ) ^
2 ) )
113112breq1d 4457 . . . . . . . 8  |-  ( r  =  ( ( Q `
 N )  x.  K )  ->  (
( r ^ 2 )  ||  N  <->  ( (
( Q `  N
)  x.  K ) ^ 2 )  ||  N ) )
114113elrab 3261 . . . . . . 7  |-  ( ( ( Q `  N
)  x.  K )  e.  { r  e.  NN  |  ( r ^ 2 )  ||  N }  <->  ( ( ( Q `  N )  x.  K )  e.  NN  /\  ( ( ( Q `  N
)  x.  K ) ^ 2 )  ||  N ) )
11584, 111, 114sylanbrc 664 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( Q `  N )  x.  K
)  e.  { r  e.  NN  |  ( r ^ 2 ) 
||  N } )
116 suprzub 11174 . . . . . 6  |-  ( ( { r  e.  NN  |  ( r ^
2 )  ||  N }  C_  ZZ  /\  E. x  e.  ZZ  A. z  e.  { r  e.  NN  |  ( r ^
2 )  ||  N } z  <_  x  /\  ( ( Q `  N )  x.  K
)  e.  { r  e.  NN  |  ( r ^ 2 ) 
||  N } )  ->  ( ( Q `
 N )  x.  K )  <_  sup ( { r  e.  NN  |  ( r ^
2 )  ||  N } ,  RR ,  <  ) )
11782, 83, 115, 116syl3anc 1228 . . . . 5  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( Q `  N )  x.  K
)  <_  sup ( { r  e.  NN  |  ( r ^
2 )  ||  N } ,  RR ,  <  ) )
1188ad2antrr 725 . . . . 5  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( Q `  N
)  =  sup ( { r  e.  NN  |  ( r ^
2 )  ||  N } ,  RR ,  <  ) )
119117, 118breqtrrd 4473 . . . 4  |-  ( ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  /\  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) )  -> 
( ( Q `  N )  x.  K
)  <_  ( Q `  N ) )
12081, 119mtand 659 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( ZZ>= ` 
2 ) )  ->  -.  ( K ^ 2 )  ||  ( N  /  ( ( Q `
 N ) ^
2 ) ) )
121120ex 434 . 2  |-  ( N  e.  NN  ->  ( K  e.  ( ZZ>= ` 
2 )  ->  -.  ( K ^ 2 ) 
||  ( N  / 
( ( Q `  N ) ^ 2 ) ) ) )
12254, 60, 1213jca 1176 1  |-  ( N  e.  NN  ->  (
( Q `  N
)  e.  NN  /\  ( ( Q `  N ) ^ 2 )  ||  N  /\  ( K  e.  ( ZZ>=
`  2 )  ->  -.  ( K ^ 2 )  ||  ( N  /  ( ( Q `
 N ) ^
2 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   {crab 2818    C_ wss 3476   (/)c0 3785   class class class wbr 4447    |-> cmpt 4505   ` cfv 5588  (class class class)co 6285   supcsup 7901   CCcc 9491   RRcr 9492   0cc0 9493   1c1 9494    x. cmul 9498    < clt 9629    <_ cle 9630    / cdiv 10207   NNcn 10537   2c2 10586   ZZcz 10865   ZZ>=cuz 11083   ^cexp 12135    || cdivides 13850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-2nd 6786  df-recs 7043  df-rdg 7077  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-sup 7902  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-div 10208  df-nn 10538  df-2 10595  df-n0 10797  df-z 10866  df-uz 11084  df-seq 12077  df-exp 12136  df-dvds 13851
This theorem is referenced by:  prmreclem2  14297  prmreclem3  14298
  Copyright terms: Public domain W3C validator