MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmrec Unicode version

Theorem prmrec 13245
Description: The sum of the reciprocals of the primes diverges. This is the "second" proof at http://en.wikipedia.org/wiki/Prime_harmonic_series, attributed to Paul Erdős. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypothesis
Ref Expression
prmrec.f  |-  F  =  ( n  e.  NN  |->  sum_ k  e.  ( Prime  i^i  ( 1 ... n
) ) ( 1  /  k ) )
Assertion
Ref Expression
prmrec  |-  -.  F  e.  dom  ~~>
Distinct variable group:    k, n
Allowed substitution hints:    F( k, n)

Proof of Theorem prmrec
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 eleq1 2464 . . . . 5  |-  ( m  =  k  ->  (
m  e.  Prime  <->  k  e.  Prime ) )
2 oveq2 6048 . . . . 5  |-  ( m  =  k  ->  (
1  /  m )  =  ( 1  / 
k ) )
3 eqidd 2405 . . . . 5  |-  ( m  =  k  ->  0  =  0 )
41, 2, 3ifbieq12d 3721 . . . 4  |-  ( m  =  k  ->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 )  =  if ( k  e.  Prime ,  ( 1  /  k ) ,  0 ) )
54cbvmptv 4260 . . 3  |-  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m ) ,  0 ) )  =  ( k  e.  NN  |->  if ( k  e.  Prime ,  ( 1  /  k ) ,  0 ) )
65prmreclem6 13244 . 2  |-  -.  seq  1 (  +  , 
( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) )  e.  dom  ~~>
7 inss2 3522 . . . . . . . . 9  |-  ( Prime  i^i  ( 1 ... n
) )  C_  (
1 ... n )
87sseli 3304 . . . . . . . . . . 11  |-  ( k  e.  ( Prime  i^i  ( 1 ... n
) )  ->  k  e.  ( 1 ... n
) )
9 elfznn 11036 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... n )  ->  k  e.  NN )
10 nnrecre 9992 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
1  /  k )  e.  RR )
1110recnd 9070 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
1  /  k )  e.  CC )
128, 9, 113syl 19 . . . . . . . . . 10  |-  ( k  e.  ( Prime  i^i  ( 1 ... n
) )  ->  (
1  /  k )  e.  CC )
1312rgen 2731 . . . . . . . . 9  |-  A. k  e.  ( Prime  i^i  (
1 ... n ) ) ( 1  /  k
)  e.  CC
147, 13pm3.2i 442 . . . . . . . 8  |-  ( ( Prime  i^i  ( 1 ... n ) ) 
C_  ( 1 ... n )  /\  A. k  e.  ( Prime  i^i  ( 1 ... n
) ) ( 1  /  k )  e.  CC )
15 fzfi 11266 . . . . . . . . 9  |-  ( 1 ... n )  e. 
Fin
1615olci 381 . . . . . . . 8  |-  ( ( 1 ... n ) 
C_  ( ZZ>= `  1
)  \/  ( 1 ... n )  e. 
Fin )
17 sumss2 12475 . . . . . . . 8  |-  ( ( ( ( Prime  i^i  ( 1 ... n
) )  C_  (
1 ... n )  /\  A. k  e.  ( Prime  i^i  ( 1 ... n
) ) ( 1  /  k )  e.  CC )  /\  (
( 1 ... n
)  C_  ( ZZ>= ` 
1 )  \/  (
1 ... n )  e. 
Fin ) )  ->  sum_ k  e.  ( Prime  i^i  ( 1 ... n
) ) ( 1  /  k )  = 
sum_ k  e.  ( 1 ... n ) if ( k  e.  ( Prime  i^i  (
1 ... n ) ) ,  ( 1  / 
k ) ,  0 ) )
1814, 16, 17mp2an 654 . . . . . . 7  |-  sum_ k  e.  ( Prime  i^i  (
1 ... n ) ) ( 1  /  k
)  =  sum_ k  e.  ( 1 ... n
) if ( k  e.  ( Prime  i^i  ( 1 ... n
) ) ,  ( 1  /  k ) ,  0 )
19 elin 3490 . . . . . . . . . 10  |-  ( k  e.  ( Prime  i^i  ( 1 ... n
) )  <->  ( k  e.  Prime  /\  k  e.  ( 1 ... n
) ) )
2019rbaib 874 . . . . . . . . 9  |-  ( k  e.  ( 1 ... n )  ->  (
k  e.  ( Prime  i^i  ( 1 ... n
) )  <->  k  e.  Prime ) )
2120ifbid 3717 . . . . . . . 8  |-  ( k  e.  ( 1 ... n )  ->  if ( k  e.  ( Prime  i^i  ( 1 ... n ) ) ,  ( 1  / 
k ) ,  0 )  =  if ( k  e.  Prime ,  ( 1  /  k ) ,  0 ) )
2221sumeq2i 12448 . . . . . . 7  |-  sum_ k  e.  ( 1 ... n
) if ( k  e.  ( Prime  i^i  ( 1 ... n
) ) ,  ( 1  /  k ) ,  0 )  = 
sum_ k  e.  ( 1 ... n ) if ( k  e. 
Prime ,  ( 1  /  k ) ,  0 )
2318, 22eqtri 2424 . . . . . 6  |-  sum_ k  e.  ( Prime  i^i  (
1 ... n ) ) ( 1  /  k
)  =  sum_ k  e.  ( 1 ... n
) if ( k  e.  Prime ,  ( 1  /  k ) ,  0 )
249adantl 453 . . . . . . . 8  |-  ( ( n  e.  NN  /\  k  e.  ( 1 ... n ) )  ->  k  e.  NN )
25 prmnn 13037 . . . . . . . . . . . 12  |-  ( k  e.  Prime  ->  k  e.  NN )
2625, 11syl 16 . . . . . . . . . . 11  |-  ( k  e.  Prime  ->  ( 1  /  k )  e.  CC )
2726adantl 453 . . . . . . . . . 10  |-  ( (  T.  /\  k  e. 
Prime )  ->  ( 1  /  k )  e.  CC )
28 0cn 9040 . . . . . . . . . . 11  |-  0  e.  CC
2928a1i 11 . . . . . . . . . 10  |-  ( (  T.  /\  -.  k  e.  Prime )  ->  0  e.  CC )
3027, 29ifclda 3726 . . . . . . . . 9  |-  (  T. 
->  if ( k  e. 
Prime ,  ( 1  /  k ) ,  0 )  e.  CC )
3130trud 1329 . . . . . . . 8  |-  if ( k  e.  Prime ,  ( 1  /  k ) ,  0 )  e.  CC
325fvmpt2 5771 . . . . . . . 8  |-  ( ( k  e.  NN  /\  if ( k  e.  Prime ,  ( 1  /  k
) ,  0 )  e.  CC )  -> 
( ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m ) ,  0 ) ) `  k )  =  if ( k  e.  Prime ,  ( 1  /  k
) ,  0 ) )
3324, 31, 32sylancl 644 . . . . . . 7  |-  ( ( n  e.  NN  /\  k  e.  ( 1 ... n ) )  ->  ( ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m ) ,  0 ) ) `
 k )  =  if ( k  e. 
Prime ,  ( 1  /  k ) ,  0 ) )
34 id 20 . . . . . . . 8  |-  ( n  e.  NN  ->  n  e.  NN )
35 nnuz 10477 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
3634, 35syl6eleq 2494 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  ( ZZ>= `  1 )
)
3731a1i 11 . . . . . . 7  |-  ( ( n  e.  NN  /\  k  e.  ( 1 ... n ) )  ->  if ( k  e.  Prime ,  ( 1  /  k ) ,  0 )  e.  CC )
3833, 36, 37fsumser 12479 . . . . . 6  |-  ( n  e.  NN  ->  sum_ k  e.  ( 1 ... n
) if ( k  e.  Prime ,  ( 1  /  k ) ,  0 )  =  (  seq  1 (  +  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m ) ,  0 ) ) ) `
 n ) )
3923, 38syl5eq 2448 . . . . 5  |-  ( n  e.  NN  ->  sum_ k  e.  ( Prime  i^i  (
1 ... n ) ) ( 1  /  k
)  =  (  seq  1 (  +  , 
( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) ) `  n
) )
4039mpteq2ia 4251 . . . 4  |-  ( n  e.  NN  |->  sum_ k  e.  ( Prime  i^i  (
1 ... n ) ) ( 1  /  k
) )  =  ( n  e.  NN  |->  (  seq  1 (  +  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m ) ,  0 ) ) ) `
 n ) )
41 prmrec.f . . . 4  |-  F  =  ( n  e.  NN  |->  sum_ k  e.  ( Prime  i^i  ( 1 ... n
) ) ( 1  /  k ) )
42 1z 10267 . . . . . . 7  |-  1  e.  ZZ
43 seqfn 11290 . . . . . . 7  |-  ( 1  e.  ZZ  ->  seq  1 (  +  , 
( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) )  Fn  ( ZZ>=
`  1 ) )
4442, 43ax-mp 8 . . . . . 6  |-  seq  1
(  +  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) )  Fn  ( ZZ>=
`  1 )
4535fneq2i 5499 . . . . . 6  |-  (  seq  1 (  +  , 
( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) )  Fn  NN  <->  seq  1 (  +  , 
( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) )  Fn  ( ZZ>=
`  1 ) )
4644, 45mpbir 201 . . . . 5  |-  seq  1
(  +  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) )  Fn  NN
47 dffn5 5731 . . . . 5  |-  (  seq  1 (  +  , 
( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) )  Fn  NN  <->  seq  1 (  +  , 
( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) )  =  ( n  e.  NN  |->  (  seq  1 (  +  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m ) ,  0 ) ) ) `
 n ) ) )
4846, 47mpbi 200 . . . 4  |-  seq  1
(  +  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) )  =  ( n  e.  NN  |->  (  seq  1 (  +  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m ) ,  0 ) ) ) `
 n ) )
4940, 41, 483eqtr4i 2434 . . 3  |-  F  =  seq  1 (  +  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m ) ,  0 ) ) )
5049eleq1i 2467 . 2  |-  ( F  e.  dom  ~~>  <->  seq  1
(  +  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( 1  /  m
) ,  0 ) ) )  e.  dom  ~~>  )
516, 50mtbir 291 1  |-  -.  F  e.  dom  ~~>
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 358    /\ wa 359    T. wtru 1322    = wceq 1649    e. wcel 1721   A.wral 2666    i^i cin 3279    C_ wss 3280   ifcif 3699    e. cmpt 4226   dom cdm 4837    Fn wfn 5408   ` cfv 5413  (class class class)co 6040   Fincfn 7068   CCcc 8944   0cc0 8946   1c1 8947    + caddc 8949    / cdiv 9633   NNcn 9956   ZZcz 10238   ZZ>=cuz 10444   ...cfz 10999    seq cseq 11278    ~~> cli 12233   sum_csu 12434   Primecprime 13034
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-rlim 12238  df-sum 12435  df-dvds 12808  df-gcd 12962  df-prm 13035  df-pc 13166
  Copyright terms: Public domain W3C validator