MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmorcht Structured version   Unicode version

Theorem prmorcht 24103
Description: Relate the primorial (product of the first  n primes) to the Chebyshev function. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
prmorcht.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  n ,  1 ) )
Assertion
Ref Expression
prmorcht  |-  ( A  e.  NN  ->  ( exp `  ( theta `  A
) )  =  (  seq 1 (  x.  ,  F ) `  A ) )

Proof of Theorem prmorcht
Dummy variables  k  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnre 10623 . . . . . . 7  |-  ( A  e.  NN  ->  A  e.  RR )
2 chtval 24035 . . . . . . 7  |-  ( A  e.  RR  ->  ( theta `  A )  = 
sum_ k  e.  ( ( 0 [,] A
)  i^i  Prime ) ( log `  k ) )
31, 2syl 17 . . . . . 6  |-  ( A  e.  NN  ->  ( theta `  A )  = 
sum_ k  e.  ( ( 0 [,] A
)  i^i  Prime ) ( log `  k ) )
4 2eluzge1 11212 . . . . . . . . . 10  |-  2  e.  ( ZZ>= `  1 )
5 ppisval2 24029 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  2  e.  ( ZZ>= ` 
1 ) )  -> 
( ( 0 [,] A )  i^i  Prime )  =  ( ( 1 ... ( |_ `  A ) )  i^i 
Prime ) )
61, 4, 5sylancl 666 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
( 0 [,] A
)  i^i  Prime )  =  ( ( 1 ... ( |_ `  A
) )  i^i  Prime ) )
7 nnz 10966 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  A  e.  ZZ )
8 flid 12050 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  ( |_ `  A )  =  A )
97, 8syl 17 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  ( |_ `  A )  =  A )
109oveq2d 6321 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
1 ... ( |_ `  A ) )  =  ( 1 ... A
) )
1110ineq1d 3663 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
( 1 ... ( |_ `  A ) )  i^i  Prime )  =  ( ( 1 ... A
)  i^i  Prime ) )
126, 11eqtrd 2463 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( 0 [,] A
)  i^i  Prime )  =  ( ( 1 ... A )  i^i  Prime ) )
1312sumeq1d 13766 . . . . . . 7  |-  ( A  e.  NN  ->  sum_ k  e.  ( ( 0 [,] A )  i^i  Prime ) ( log `  k
)  =  sum_ k  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  k
) )
14 inss1 3682 . . . . . . . 8  |-  ( ( 1 ... A )  i^i  Prime )  C_  (
1 ... A )
1514sseli 3460 . . . . . . . . . 10  |-  ( k  e.  ( ( 1 ... A )  i^i 
Prime )  ->  k  e.  ( 1 ... A
) )
16 elfznn 11835 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 1 ... A )  ->  k  e.  NN )
1716adantl 467 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  k  e.  NN )
1817nnrpd 11346 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  k  e.  RR+ )
1918relogcld 23570 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( log `  k
)  e.  RR )
2019recnd 9676 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( log `  k
)  e.  CC )
2115, 20sylan2 476 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  k  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  ( log `  k )  e.  CC )
2221ralrimiva 2836 . . . . . . . 8  |-  ( A  e.  NN  ->  A. k  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  k
)  e.  CC )
23 fzfi 12191 . . . . . . . . . 10  |-  ( 1 ... A )  e. 
Fin
2423olci 392 . . . . . . . . 9  |-  ( ( 1 ... A ) 
C_  ( ZZ>= `  1
)  \/  ( 1 ... A )  e. 
Fin )
25 sumss2 13791 . . . . . . . . 9  |-  ( ( ( ( ( 1 ... A )  i^i 
Prime )  C_  ( 1 ... A )  /\  A. k  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  k )  e.  CC )  /\  ( ( 1 ... A )  C_  ( ZZ>= `  1 )  \/  ( 1 ... A
)  e.  Fin )
)  ->  sum_ k  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  k
)  =  sum_ k  e.  ( 1 ... A
) if ( k  e.  ( ( 1 ... A )  i^i 
Prime ) ,  ( log `  k ) ,  0 ) )
2624, 25mpan2 675 . . . . . . . 8  |-  ( ( ( ( 1 ... A )  i^i  Prime ) 
C_  ( 1 ... A )  /\  A. k  e.  ( (
1 ... A )  i^i 
Prime ) ( log `  k
)  e.  CC )  ->  sum_ k  e.  ( ( 1 ... A
)  i^i  Prime ) ( log `  k )  =  sum_ k  e.  ( 1 ... A ) if ( k  e.  ( ( 1 ... A )  i^i  Prime ) ,  ( log `  k
) ,  0 ) )
2714, 22, 26sylancr 667 . . . . . . 7  |-  ( A  e.  NN  ->  sum_ k  e.  ( ( 1 ... A )  i^i  Prime ) ( log `  k
)  =  sum_ k  e.  ( 1 ... A
) if ( k  e.  ( ( 1 ... A )  i^i 
Prime ) ,  ( log `  k ) ,  0 ) )
2813, 27eqtrd 2463 . . . . . 6  |-  ( A  e.  NN  ->  sum_ k  e.  ( ( 0 [,] A )  i^i  Prime ) ( log `  k
)  =  sum_ k  e.  ( 1 ... A
) if ( k  e.  ( ( 1 ... A )  i^i 
Prime ) ,  ( log `  k ) ,  0 ) )
293, 28eqtrd 2463 . . . . 5  |-  ( A  e.  NN  ->  ( theta `  A )  = 
sum_ k  e.  ( 1 ... A ) if ( k  e.  ( ( 1 ... A )  i^i  Prime ) ,  ( log `  k
) ,  0 ) )
30 elin 3649 . . . . . . . 8  |-  ( k  e.  ( ( 1 ... A )  i^i 
Prime )  <->  ( k  e.  ( 1 ... A
)  /\  k  e.  Prime ) )
3130baibr 912 . . . . . . 7  |-  ( k  e.  ( 1 ... A )  ->  (
k  e.  Prime  <->  k  e.  ( ( 1 ... A )  i^i  Prime ) ) )
3231ifbid 3933 . . . . . 6  |-  ( k  e.  ( 1 ... A )  ->  if ( k  e.  Prime ,  ( log `  k
) ,  0 )  =  if ( k  e.  ( ( 1 ... A )  i^i 
Prime ) ,  ( log `  k ) ,  0 ) )
3332sumeq2i 13764 . . . . 5  |-  sum_ k  e.  ( 1 ... A
) if ( k  e.  Prime ,  ( log `  k ) ,  0 )  =  sum_ k  e.  ( 1 ... A
) if ( k  e.  ( ( 1 ... A )  i^i 
Prime ) ,  ( log `  k ) ,  0 )
3429, 33syl6eqr 2481 . . . 4  |-  ( A  e.  NN  ->  ( theta `  A )  = 
sum_ k  e.  ( 1 ... A ) if ( k  e. 
Prime ,  ( log `  k ) ,  0 ) )
35 eleq1 2495 . . . . . . . 8  |-  ( n  =  k  ->  (
n  e.  Prime  <->  k  e.  Prime ) )
36 fveq2 5881 . . . . . . . 8  |-  ( n  =  k  ->  ( log `  n )  =  ( log `  k
) )
3735, 36ifbieq1d 3934 . . . . . . 7  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( log `  n
) ,  0 )  =  if ( k  e.  Prime ,  ( log `  k ) ,  0 ) )
38 eqid 2422 . . . . . . 7  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )
39 fvex 5891 . . . . . . . 8  |-  ( log `  k )  e.  _V
40 0cn 9642 . . . . . . . . 9  |-  0  e.  CC
4140elexi 3090 . . . . . . . 8  |-  0  e.  _V
4239, 41ifex 3979 . . . . . . 7  |-  if ( k  e.  Prime ,  ( log `  k ) ,  0 )  e. 
_V
4337, 38, 42fvmpt 5964 . . . . . 6  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) ) `  k )  =  if ( k  e.  Prime ,  ( log `  k ) ,  0 ) )
4417, 43syl 17 . . . . 5  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) ) `
 k )  =  if ( k  e. 
Prime ,  ( log `  k ) ,  0 ) )
45 elnnuz 11202 . . . . . 6  |-  ( A  e.  NN  <->  A  e.  ( ZZ>= `  1 )
)
4645biimpi 197 . . . . 5  |-  ( A  e.  NN  ->  A  e.  ( ZZ>= `  1 )
)
47 ifcl 3953 . . . . . 6  |-  ( ( ( log `  k
)  e.  CC  /\  0  e.  CC )  ->  if ( k  e. 
Prime ,  ( log `  k ) ,  0 )  e.  CC )
4820, 40, 47sylancl 666 . . . . 5  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  if ( k  e.  Prime ,  ( log `  k ) ,  0 )  e.  CC )
4944, 46, 48fsumser 13795 . . . 4  |-  ( A  e.  NN  ->  sum_ k  e.  ( 1 ... A
) if ( k  e.  Prime ,  ( log `  k ) ,  0 )  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) ) ) `  A
) )
5034, 49eqtrd 2463 . . 3  |-  ( A  e.  NN  ->  ( theta `  A )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) ) ) `  A ) )
5150fveq2d 5885 . 2  |-  ( A  e.  NN  ->  ( exp `  ( theta `  A
) )  =  ( exp `  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) ) ) `  A
) ) )
52 addcl 9628 . . . 4  |-  ( ( k  e.  CC  /\  p  e.  CC )  ->  ( k  +  p
)  e.  CC )
5352adantl 467 . . 3  |-  ( ( A  e.  NN  /\  ( k  e.  CC  /\  p  e.  CC ) )  ->  ( k  +  p )  e.  CC )
5444, 48eqeltrd 2507 . . 3  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) ) `
 k )  e.  CC )
55 efadd 14147 . . . 4  |-  ( ( k  e.  CC  /\  p  e.  CC )  ->  ( exp `  (
k  +  p ) )  =  ( ( exp `  k )  x.  ( exp `  p
) ) )
5655adantl 467 . . 3  |-  ( ( A  e.  NN  /\  ( k  e.  CC  /\  p  e.  CC ) )  ->  ( exp `  ( k  +  p
) )  =  ( ( exp `  k
)  x.  ( exp `  p ) ) )
57 1nn 10627 . . . . . . 7  |-  1  e.  NN
58 ifcl 3953 . . . . . . 7  |-  ( ( k  e.  NN  /\  1  e.  NN )  ->  if ( k  e. 
Prime ,  k , 
1 )  e.  NN )
5917, 57, 58sylancl 666 . . . . . 6  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  if ( k  e.  Prime ,  k ,  1 )  e.  NN )
6059nnrpd 11346 . . . . 5  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  if ( k  e.  Prime ,  k ,  1 )  e.  RR+ )
6160reeflogd 23571 . . . 4  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( exp `  ( log `  if ( k  e.  Prime ,  k ,  1 ) ) )  =  if ( k  e.  Prime ,  k ,  1 ) )
62 fvif 5892 . . . . . . 7  |-  ( log `  if ( k  e. 
Prime ,  k , 
1 ) )  =  if ( k  e. 
Prime ,  ( log `  k ) ,  ( log `  1 ) )
63 log1 23533 . . . . . . . 8  |-  ( log `  1 )  =  0
64 ifeq2 3916 . . . . . . . 8  |-  ( ( log `  1 )  =  0  ->  if ( k  e.  Prime ,  ( log `  k
) ,  ( log `  1 ) )  =  if ( k  e.  Prime ,  ( log `  k ) ,  0 ) )
6563, 64ax-mp 5 . . . . . . 7  |-  if ( k  e.  Prime ,  ( log `  k ) ,  ( log `  1
) )  =  if ( k  e.  Prime ,  ( log `  k
) ,  0 )
6662, 65eqtri 2451 . . . . . 6  |-  ( log `  if ( k  e. 
Prime ,  k , 
1 ) )  =  if ( k  e. 
Prime ,  ( log `  k ) ,  0 )
6744, 66syl6eqr 2481 . . . . 5  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) ) `
 k )  =  ( log `  if ( k  e.  Prime ,  k ,  1 ) ) )
6867fveq2d 5885 . . . 4  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( exp `  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) ) `  k ) )  =  ( exp `  ( log `  if ( k  e.  Prime ,  k ,  1 ) ) ) )
69 id 22 . . . . . . 7  |-  ( n  =  k  ->  n  =  k )
7035, 69ifbieq1d 3934 . . . . . 6  |-  ( n  =  k  ->  if ( n  e.  Prime ,  n ,  1 )  =  if ( k  e.  Prime ,  k ,  1 ) )
71 prmorcht.1 . . . . . 6  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  n ,  1 ) )
72 vex 3083 . . . . . . 7  |-  k  e. 
_V
7357elexi 3090 . . . . . . 7  |-  1  e.  _V
7472, 73ifex 3979 . . . . . 6  |-  if ( k  e.  Prime ,  k ,  1 )  e. 
_V
7570, 71, 74fvmpt 5964 . . . . 5  |-  ( k  e.  NN  ->  ( F `  k )  =  if ( k  e. 
Prime ,  k , 
1 ) )
7617, 75syl 17 . . . 4  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( F `  k )  =  if ( k  e.  Prime ,  k ,  1 ) )
7761, 68, 763eqtr4d 2473 . . 3  |-  ( ( A  e.  NN  /\  k  e.  ( 1 ... A ) )  ->  ( exp `  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) ) `  k ) )  =  ( F `
 k ) )
7853, 54, 46, 56, 77seqhomo 12266 . 2  |-  ( A  e.  NN  ->  ( exp `  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) ) ) `  A
) )  =  (  seq 1 (  x.  ,  F ) `  A ) )
7951, 78eqtrd 2463 1  |-  ( A  e.  NN  ->  ( exp `  ( theta `  A
) )  =  (  seq 1 (  x.  ,  F ) `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 369    /\ wa 370    = wceq 1437    e. wcel 1872   A.wral 2771    i^i cin 3435    C_ wss 3436   ifcif 3911    |-> cmpt 4482   ` cfv 5601  (class class class)co 6305   Fincfn 7580   CCcc 9544   RRcr 9545   0cc0 9546   1c1 9547    + caddc 9549    x. cmul 9551   NNcn 10616   2c2 10666   ZZcz 10944   ZZ>=cuz 11166   [,]cicc 11645   ...cfz 11791   |_cfl 12032    seqcseq 12219   sum_csu 13751   expce 14113   Primecprime 14621   logclog 23502   thetaccht 24015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-inf2 8155  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623  ax-pre-sup 9624  ax-addf 9625  ax-mulf 9626
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-1o 7193  df-2o 7194  df-oadd 7197  df-er 7374  df-map 7485  df-pm 7486  df-ixp 7534  df-en 7581  df-dom 7582  df-sdom 7583  df-fin 7584  df-fsupp 7893  df-fi 7934  df-sup 7965  df-inf 7966  df-oi 8034  df-card 8381  df-cda 8605  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-5 10678  df-6 10679  df-7 10680  df-8 10681  df-9 10682  df-10 10683  df-n0 10877  df-z 10945  df-dec 11059  df-uz 11167  df-q 11272  df-rp 11310  df-xneg 11416  df-xadd 11417  df-xmul 11418  df-ioo 11646  df-ioc 11647  df-ico 11648  df-icc 11649  df-fz 11792  df-fzo 11923  df-fl 12034  df-mod 12103  df-seq 12220  df-exp 12279  df-fac 12466  df-bc 12494  df-hash 12522  df-shft 13130  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-limsup 13525  df-clim 13551  df-rlim 13552  df-sum 13752  df-ef 14120  df-sin 14122  df-cos 14123  df-pi 14125  df-dvds 14305  df-prm 14622  df-struct 15122  df-ndx 15123  df-slot 15124  df-base 15125  df-sets 15126  df-ress 15127  df-plusg 15202  df-mulr 15203  df-starv 15204  df-sca 15205  df-vsca 15206  df-ip 15207  df-tset 15208  df-ple 15209  df-ds 15211  df-unif 15212  df-hom 15213  df-cco 15214  df-rest 15320  df-topn 15321  df-0g 15339  df-gsum 15340  df-topgen 15341  df-pt 15342  df-prds 15345  df-xrs 15399  df-qtop 15405  df-imas 15406  df-xps 15409  df-mre 15491  df-mrc 15492  df-acs 15494  df-mgm 16487  df-sgrp 16526  df-mnd 16536  df-submnd 16582  df-mulg 16675  df-cntz 16970  df-cmn 17431  df-psmet 18961  df-xmet 18962  df-met 18963  df-bl 18964  df-mopn 18965  df-fbas 18966  df-fg 18967  df-cnfld 18970  df-top 19919  df-bases 19920  df-topon 19921  df-topsp 19922  df-cld 20032  df-ntr 20033  df-cls 20034  df-nei 20112  df-lp 20150  df-perf 20151  df-cn 20241  df-cnp 20242  df-haus 20329  df-tx 20575  df-hmeo 20768  df-fil 20859  df-fm 20951  df-flim 20952  df-flf 20953  df-xms 21333  df-ms 21334  df-tms 21335  df-cncf 21908  df-limc 22819  df-dv 22820  df-log 23504  df-cht 24021
This theorem is referenced by:  chtublem  24137  bposlem6  24215
  Copyright terms: Public domain W3C validator