MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmirredlemOLD Structured version   Unicode version

Theorem prmirredlemOLD 18321
Description: A positive integer is irreducible over  ZZ iff it is a prime number. (Contributed by Mario Carneiro, 5-Dec-2014.) Obsolete version of prmirredlem 18318 as of 10-Jun-2019. (New usage is discouraged.)
Hypotheses
Ref Expression
prmirredOLD.1  |-  Z  =  (flds  ZZ )
prmirredOLD.2  |-  I  =  (Irred `  Z )
Assertion
Ref Expression
prmirredlemOLD  |-  ( A  e.  NN  ->  ( A  e.  I  <->  A  e.  Prime ) )

Proof of Theorem prmirredlemOLD
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsubrg 18267 . . . . . . 7  |-  ZZ  e.  (SubRing ` fld )
2 prmirredOLD.1 . . . . . . . 8  |-  Z  =  (flds  ZZ )
32subrgrng 17232 . . . . . . 7  |-  ( ZZ  e.  (SubRing ` fld )  ->  Z  e. 
Ring )
41, 3ax-mp 5 . . . . . 6  |-  Z  e. 
Ring
5 prmirredOLD.2 . . . . . . 7  |-  I  =  (Irred `  Z )
6 cnfld1 18242 . . . . . . . . 9  |-  1  =  ( 1r ` fld )
72, 6subrg1 17239 . . . . . . . 8  |-  ( ZZ  e.  (SubRing ` fld )  ->  1  =  ( 1r `  Z
) )
81, 7ax-mp 5 . . . . . . 7  |-  1  =  ( 1r `  Z )
95, 8irredn1 17156 . . . . . 6  |-  ( ( Z  e.  Ring  /\  A  e.  I )  ->  A  =/=  1 )
104, 9mpan 670 . . . . 5  |-  ( A  e.  I  ->  A  =/=  1 )
1110anim2i 569 . . . 4  |-  ( ( A  e.  NN  /\  A  e.  I )  ->  ( A  e.  NN  /\  A  =/=  1 ) )
12 eluz2b3 11155 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  A  =/=  1 ) )
1311, 12sylibr 212 . . 3  |-  ( ( A  e.  NN  /\  A  e.  I )  ->  A  e.  ( ZZ>= ` 
2 ) )
14 nnz 10886 . . . . . . . 8  |-  ( y  e.  NN  ->  y  e.  ZZ )
1514ad2antrl 727 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  e.  ZZ )
16 simprr 756 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  ||  A )
17 nnne0 10568 . . . . . . . . . 10  |-  ( y  e.  NN  ->  y  =/=  0 )
1817ad2antrl 727 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  =/=  0 )
19 nnz 10886 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  e.  ZZ )
2019ad2antrr 725 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  ->  A  e.  ZZ )
21 dvdsval2 13850 . . . . . . . . 9  |-  ( ( y  e.  ZZ  /\  y  =/=  0  /\  A  e.  ZZ )  ->  (
y  ||  A  <->  ( A  /  y )  e.  ZZ ) )
2215, 18, 20, 21syl3anc 1228 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  ||  A  <->  ( A  /  y )  e.  ZZ ) )
2316, 22mpbid 210 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( A  /  y
)  e.  ZZ )
2420zcnd 10967 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  ->  A  e.  CC )
25 nncn 10544 . . . . . . . . . 10  |-  ( y  e.  NN  ->  y  e.  CC )
2625ad2antrl 727 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  e.  CC )
2724, 26, 18divcan2d 10322 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  x.  ( A  /  y ) )  =  A )
28 simplr 754 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  ->  A  e.  I )
2927, 28eqeltrd 2555 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  x.  ( A  /  y ) )  e.  I )
302subrgbas 17238 . . . . . . . . 9  |-  ( ZZ  e.  (SubRing ` fld )  ->  ZZ  =  ( Base `  Z )
)
311, 30ax-mp 5 . . . . . . . 8  |-  ZZ  =  ( Base `  Z )
32 eqid 2467 . . . . . . . 8  |-  (Unit `  Z )  =  (Unit `  Z )
33 zex 10873 . . . . . . . . 9  |-  ZZ  e.  _V
34 cnfldmul 18225 . . . . . . . . . 10  |-  x.  =  ( .r ` fld )
352, 34ressmulr 14608 . . . . . . . . 9  |-  ( ZZ  e.  _V  ->  x.  =  ( .r `  Z ) )
3633, 35ax-mp 5 . . . . . . . 8  |-  x.  =  ( .r `  Z )
375, 31, 32, 36irredmul 17159 . . . . . . 7  |-  ( ( y  e.  ZZ  /\  ( A  /  y
)  e.  ZZ  /\  ( y  x.  ( A  /  y ) )  e.  I )  -> 
( y  e.  (Unit `  Z )  \/  ( A  /  y )  e.  (Unit `  Z )
) )
3815, 23, 29, 37syl3anc 1228 . . . . . 6  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  e.  (Unit `  Z )  \/  ( A  /  y )  e.  (Unit `  Z )
) )
392zrngunit 18316 . . . . . . . . . 10  |-  ( y  e.  (Unit `  Z
)  <->  ( y  e.  ZZ  /\  ( abs `  y )  =  1 ) )
4039baib 901 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  (
y  e.  (Unit `  Z )  <->  ( abs `  y )  =  1 ) )
4115, 40syl 16 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  e.  (Unit `  Z )  <->  ( abs `  y )  =  1 ) )
42 nnnn0 10802 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  NN0 )
43 nn0re 10804 . . . . . . . . . . . 12  |-  ( y  e.  NN0  ->  y  e.  RR )
44 nn0ge0 10821 . . . . . . . . . . . 12  |-  ( y  e.  NN0  ->  0  <_ 
y )
4543, 44absidd 13217 . . . . . . . . . . 11  |-  ( y  e.  NN0  ->  ( abs `  y )  =  y )
4642, 45syl 16 . . . . . . . . . 10  |-  ( y  e.  NN  ->  ( abs `  y )  =  y )
4746ad2antrl 727 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( abs `  y
)  =  y )
4847eqeq1d 2469 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( abs `  y
)  =  1  <->  y  =  1 ) )
4941, 48bitrd 253 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  e.  (Unit `  Z )  <->  y  = 
1 ) )
502zrngunit 18316 . . . . . . . . . 10  |-  ( ( A  /  y )  e.  (Unit `  Z
)  <->  ( ( A  /  y )  e.  ZZ  /\  ( abs `  ( A  /  y
) )  =  1 ) )
5150baib 901 . . . . . . . . 9  |-  ( ( A  /  y )  e.  ZZ  ->  (
( A  /  y
)  e.  (Unit `  Z )  <->  ( abs `  ( A  /  y
) )  =  1 ) )
5223, 51syl 16 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( A  / 
y )  e.  (Unit `  Z )  <->  ( abs `  ( A  /  y
) )  =  1 ) )
53 nnre 10543 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  A  e.  RR )
5453ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  ->  A  e.  RR )
55 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  e.  NN )
5654, 55nndivred 10584 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( A  /  y
)  e.  RR )
57 nnnn0 10802 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  A  e.  NN0 )
58 nn0ge0 10821 . . . . . . . . . . . . . 14  |-  ( A  e.  NN0  ->  0  <_  A )
5957, 58syl 16 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  0  <_  A )
6059ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
0  <_  A )
6155nnred 10551 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  e.  RR )
62 nngt0 10565 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  0  <  y )
6362ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
0  <  y )
64 divge0 10411 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( y  e.  RR  /\  0  <  y ) )  ->  0  <_  ( A  /  y ) )
6554, 60, 61, 63, 64syl22anc 1229 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
0  <_  ( A  /  y ) )
6656, 65absidd 13217 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( abs `  ( A  /  y ) )  =  ( A  / 
y ) )
6766eqeq1d 2469 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( abs `  ( A  /  y ) )  =  1  <->  ( A  /  y )  =  1 ) )
68 ax-1cn 9550 . . . . . . . . . . 11  |-  1  e.  CC
6968a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
1  e.  CC )
7024, 26, 69, 18divmuld 10342 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( A  / 
y )  =  1  <-> 
( y  x.  1 )  =  A ) )
7126mulid1d 9613 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  x.  1 )  =  y )
7271eqeq1d 2469 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( y  x.  1 )  =  A  <-> 
y  =  A ) )
7367, 70, 723bitrd 279 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( abs `  ( A  /  y ) )  =  1  <->  y  =  A ) )
7452, 73bitrd 253 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( A  / 
y )  e.  (Unit `  Z )  <->  y  =  A ) )
7549, 74orbi12d 709 . . . . . 6  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( y  e.  (Unit `  Z )  \/  ( A  /  y
)  e.  (Unit `  Z ) )  <->  ( y  =  1  \/  y  =  A ) ) )
7638, 75mpbid 210 . . . . 5  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  =  1  \/  y  =  A ) )
7776expr 615 . . . 4  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  y  e.  NN )  ->  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) ) )
7877ralrimiva 2878 . . 3  |-  ( ( A  e.  NN  /\  A  e.  I )  ->  A. y  e.  NN  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) ) )
79 isprm2 14084 . . 3  |-  ( A  e.  Prime  <->  ( A  e.  ( ZZ>= `  2 )  /\  A. y  e.  NN  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) ) ) )
8013, 78, 79sylanbrc 664 . 2  |-  ( ( A  e.  NN  /\  A  e.  I )  ->  A  e.  Prime )
81 prmz 14080 . . . 4  |-  ( A  e.  Prime  ->  A  e.  ZZ )
82 1nprm 14081 . . . . 5  |-  -.  1  e.  Prime
832zrngunit 18316 . . . . . 6  |-  ( A  e.  (Unit `  Z
)  <->  ( A  e.  ZZ  /\  ( abs `  A )  =  1 ) )
84 prmnn 14079 . . . . . . . . . 10  |-  ( A  e.  Prime  ->  A  e.  NN )
85 nn0re 10804 . . . . . . . . . . 11  |-  ( A  e.  NN0  ->  A  e.  RR )
8685, 58absidd 13217 . . . . . . . . . 10  |-  ( A  e.  NN0  ->  ( abs `  A )  =  A )
8784, 57, 863syl 20 . . . . . . . . 9  |-  ( A  e.  Prime  ->  ( abs `  A )  =  A )
88 id 22 . . . . . . . . 9  |-  ( A  e.  Prime  ->  A  e. 
Prime )
8987, 88eqeltrd 2555 . . . . . . . 8  |-  ( A  e.  Prime  ->  ( abs `  A )  e.  Prime )
90 eleq1 2539 . . . . . . . 8  |-  ( ( abs `  A )  =  1  ->  (
( abs `  A
)  e.  Prime  <->  1  e.  Prime ) )
9189, 90syl5ibcom 220 . . . . . . 7  |-  ( A  e.  Prime  ->  ( ( abs `  A )  =  1  ->  1  e.  Prime ) )
9291adantld 467 . . . . . 6  |-  ( A  e.  Prime  ->  ( ( A  e.  ZZ  /\  ( abs `  A )  =  1 )  -> 
1  e.  Prime )
)
9383, 92syl5bi 217 . . . . 5  |-  ( A  e.  Prime  ->  ( A  e.  (Unit `  Z
)  ->  1  e.  Prime ) )
9482, 93mtoi 178 . . . 4  |-  ( A  e.  Prime  ->  -.  A  e.  (Unit `  Z )
)
95 simplrl 759 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  x  e.  ZZ )
9695zcnd 10967 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  x  e.  CC )
9784ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  A  e.  NN )
9897nnne0d 10580 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  A  =/=  0 )
99 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
x  x.  y )  =  A )
100 simplrr 760 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  y  e.  ZZ )
101100zcnd 10967 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  y  e.  CC )
102101mul02d 9777 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
0  x.  y )  =  0 )
10398, 99, 1023netr4d 2772 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
x  x.  y )  =/=  ( 0  x.  y ) )
104 oveq1 6291 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
x  x.  y )  =  ( 0  x.  y ) )
105104necon3i 2707 . . . . . . . . . . . 12  |-  ( ( x  x.  y )  =/=  ( 0  x.  y )  ->  x  =/=  0 )
106103, 105syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  x  =/=  0 )
10796, 106absne0d 13241 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  =/=  0 )
108107neneqd 2669 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  -.  ( abs `  x )  =  0 )
109 nn0abscl 13108 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  ( abs `  x )  e. 
NN0 )
11095, 109syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  e. 
NN0 )
111 elnn0 10797 . . . . . . . . . . 11  |-  ( ( abs `  x )  e.  NN0  <->  ( ( abs `  x )  e.  NN  \/  ( abs `  x
)  =  0 ) )
112110, 111sylib 196 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( abs `  x
)  e.  NN  \/  ( abs `  x )  =  0 ) )
113112ord 377 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( -.  ( abs `  x
)  e.  NN  ->  ( abs `  x )  =  0 ) )
114108, 113mt3d 125 . . . . . . . 8  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  e.  NN )
11579simprbi 464 . . . . . . . . 9  |-  ( A  e.  Prime  ->  A. y  e.  NN  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) ) )
116115ad2antrr 725 . . . . . . . 8  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  A. y  e.  NN  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) ) )
117 dvdsmul1 13866 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  x  ||  ( x  x.  y ) )
118117ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  x  ||  ( x  x.  y
) )
119118, 99breqtrd 4471 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  x  ||  A )
12081ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  A  e.  ZZ )
121 absdvdsb 13863 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  A  e.  ZZ )  ->  ( x  ||  A  <->  ( abs `  x ) 
||  A ) )
12295, 120, 121syl2anc 661 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
x  ||  A  <->  ( abs `  x )  ||  A
) )
123119, 122mpbid 210 . . . . . . . 8  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  ||  A )
124 breq1 4450 . . . . . . . . . 10  |-  ( y  =  ( abs `  x
)  ->  ( y  ||  A  <->  ( abs `  x
)  ||  A )
)
125 eqeq1 2471 . . . . . . . . . . 11  |-  ( y  =  ( abs `  x
)  ->  ( y  =  1  <->  ( abs `  x )  =  1 ) )
126 eqeq1 2471 . . . . . . . . . . 11  |-  ( y  =  ( abs `  x
)  ->  ( y  =  A  <->  ( abs `  x
)  =  A ) )
127125, 126orbi12d 709 . . . . . . . . . 10  |-  ( y  =  ( abs `  x
)  ->  ( (
y  =  1  \/  y  =  A )  <-> 
( ( abs `  x
)  =  1  \/  ( abs `  x
)  =  A ) ) )
128124, 127imbi12d 320 . . . . . . . . 9  |-  ( y  =  ( abs `  x
)  ->  ( (
y  ||  A  ->  ( y  =  1  \/  y  =  A ) )  <->  ( ( abs `  x )  ||  A  ->  ( ( abs `  x
)  =  1  \/  ( abs `  x
)  =  A ) ) ) )
129128rspcv 3210 . . . . . . . 8  |-  ( ( abs `  x )  e.  NN  ->  ( A. y  e.  NN  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) )  ->  (
( abs `  x
)  ||  A  ->  ( ( abs `  x
)  =  1  \/  ( abs `  x
)  =  A ) ) ) )
130114, 116, 123, 129syl3c 61 . . . . . . 7  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( abs `  x
)  =  1  \/  ( abs `  x
)  =  A ) )
1312zrngunit 18316 . . . . . . . . . 10  |-  ( x  e.  (Unit `  Z
)  <->  ( x  e.  ZZ  /\  ( abs `  x )  =  1 ) )
132131baib 901 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  (
x  e.  (Unit `  Z )  <->  ( abs `  x )  =  1 ) )
13395, 132syl 16 . . . . . . . 8  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
x  e.  (Unit `  Z )  <->  ( abs `  x )  =  1 ) )
134100, 40syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
y  e.  (Unit `  Z )  <->  ( abs `  y )  =  1 ) )
135101abscld 13230 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  y )  e.  RR )
136135recnd 9622 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  y )  e.  CC )
13768a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  1  e.  CC )
13896abscld 13230 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  e.  RR )
139138recnd 9622 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  e.  CC )
140136, 137, 139, 107mulcand 10182 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( ( abs `  x
)  x.  ( abs `  y ) )  =  ( ( abs `  x
)  x.  1 )  <-> 
( abs `  y
)  =  1 ) )
14199fveq2d 5870 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  ( x  x.  y ) )  =  ( abs `  A
) )
14296, 101absmuld 13248 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  ( x  x.  y ) )  =  ( ( abs `  x
)  x.  ( abs `  y ) ) )
14387ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  A )  =  A )
144141, 142, 1433eqtr3d 2516 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( abs `  x
)  x.  ( abs `  y ) )  =  A )
145139mulid1d 9613 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( abs `  x
)  x.  1 )  =  ( abs `  x
) )
146144, 145eqeq12d 2489 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( ( abs `  x
)  x.  ( abs `  y ) )  =  ( ( abs `  x
)  x.  1 )  <-> 
A  =  ( abs `  x ) ) )
147 eqcom 2476 . . . . . . . . . 10  |-  ( A  =  ( abs `  x
)  <->  ( abs `  x
)  =  A )
148146, 147syl6bb 261 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( ( abs `  x
)  x.  ( abs `  y ) )  =  ( ( abs `  x
)  x.  1 )  <-> 
( abs `  x
)  =  A ) )
149134, 140, 1483bitr2d 281 . . . . . . . 8  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
y  e.  (Unit `  Z )  <->  ( abs `  x )  =  A ) )
150133, 149orbi12d 709 . . . . . . 7  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( x  e.  (Unit `  Z )  \/  y  e.  (Unit `  Z )
)  <->  ( ( abs `  x )  =  1  \/  ( abs `  x
)  =  A ) ) )
151130, 150mpbird 232 . . . . . 6  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
x  e.  (Unit `  Z )  \/  y  e.  (Unit `  Z )
) )
152151ex 434 . . . . 5  |-  ( ( A  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  x.  y )  =  A  ->  (
x  e.  (Unit `  Z )  \/  y  e.  (Unit `  Z )
) ) )
153152ralrimivva 2885 . . . 4  |-  ( A  e.  Prime  ->  A. x  e.  ZZ  A. y  e.  ZZ  ( ( x  x.  y )  =  A  ->  ( x  e.  (Unit `  Z )  \/  y  e.  (Unit `  Z ) ) ) )
15431, 32, 5, 36isirred2 17151 . . . 4  |-  ( A  e.  I  <->  ( A  e.  ZZ  /\  -.  A  e.  (Unit `  Z )  /\  A. x  e.  ZZ  A. y  e.  ZZ  (
( x  x.  y
)  =  A  -> 
( x  e.  (Unit `  Z )  \/  y  e.  (Unit `  Z )
) ) ) )
15581, 94, 153, 154syl3anbrc 1180 . . 3  |-  ( A  e.  Prime  ->  A  e.  I )
156155adantl 466 . 2  |-  ( ( A  e.  NN  /\  A  e.  Prime )  ->  A  e.  I )
15780, 156impbida 830 1  |-  ( A  e.  NN  ->  ( A  e.  I  <->  A  e.  Prime ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   _Vcvv 3113   class class class wbr 4447   ` cfv 5588  (class class class)co 6284   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    x. cmul 9497    < clt 9628    <_ cle 9629    / cdiv 10206   NNcn 10536   2c2 10585   NN0cn0 10795   ZZcz 10864   ZZ>=cuz 11082   abscabs 13030    || cdivides 13847   Primecprime 14076   Basecbs 14490   ↾s cress 14491   .rcmulr 14556   1rcur 16955   Ringcrg 17000  Unitcui 17089  Irredcir 17090  SubRingcsubrg 17225  ℂfldccnfld 18219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-tpos 6955  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-rp 11221  df-fz 11673  df-seq 12076  df-exp 12135  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-dvds 13848  df-prm 14077  df-gz 14307  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-0g 14697  df-mnd 15732  df-grp 15867  df-minusg 15868  df-subg 16003  df-cmn 16606  df-mgp 16944  df-ur 16956  df-rng 17002  df-cring 17003  df-oppr 17073  df-dvdsr 17091  df-unit 17092  df-irred 17093  df-invr 17122  df-dvr 17133  df-drng 17198  df-subrg 17227  df-cnfld 18220
This theorem is referenced by:  dfprm2OLD  18322  prmirredOLD  18323
  Copyright terms: Public domain W3C validator