MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmirredlemOLD Structured version   Unicode version

Theorem prmirredlemOLD 17920
Description: A positive integer is irreducible over  ZZ iff it is a prime number. (Contributed by Mario Carneiro, 5-Dec-2014.) Obsolete version of prmirredlem 17917 as of 10-Jun-2019. (New usage is discouraged.)
Hypotheses
Ref Expression
prmirredOLD.1  |-  Z  =  (flds  ZZ )
prmirredOLD.2  |-  I  =  (Irred `  Z )
Assertion
Ref Expression
prmirredlemOLD  |-  ( A  e.  NN  ->  ( A  e.  I  <->  A  e.  Prime ) )

Proof of Theorem prmirredlemOLD
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsubrg 17866 . . . . . . 7  |-  ZZ  e.  (SubRing ` fld )
2 prmirredOLD.1 . . . . . . . 8  |-  Z  =  (flds  ZZ )
32subrgrng 16868 . . . . . . 7  |-  ( ZZ  e.  (SubRing ` fld )  ->  Z  e. 
Ring )
41, 3ax-mp 5 . . . . . 6  |-  Z  e. 
Ring
5 prmirredOLD.2 . . . . . . 7  |-  I  =  (Irred `  Z )
6 cnfld1 17841 . . . . . . . . 9  |-  1  =  ( 1r ` fld )
72, 6subrg1 16875 . . . . . . . 8  |-  ( ZZ  e.  (SubRing ` fld )  ->  1  =  ( 1r `  Z
) )
81, 7ax-mp 5 . . . . . . 7  |-  1  =  ( 1r `  Z )
95, 8irredn1 16798 . . . . . 6  |-  ( ( Z  e.  Ring  /\  A  e.  I )  ->  A  =/=  1 )
104, 9mpan 670 . . . . 5  |-  ( A  e.  I  ->  A  =/=  1 )
1110anim2i 569 . . . 4  |-  ( ( A  e.  NN  /\  A  e.  I )  ->  ( A  e.  NN  /\  A  =/=  1 ) )
12 eluz2b3 10928 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  A  =/=  1 ) )
1311, 12sylibr 212 . . 3  |-  ( ( A  e.  NN  /\  A  e.  I )  ->  A  e.  ( ZZ>= ` 
2 ) )
14 nnz 10668 . . . . . . . 8  |-  ( y  e.  NN  ->  y  e.  ZZ )
1514ad2antrl 727 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  e.  ZZ )
16 simprr 756 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  ||  A )
17 nnne0 10354 . . . . . . . . . 10  |-  ( y  e.  NN  ->  y  =/=  0 )
1817ad2antrl 727 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  =/=  0 )
19 nnz 10668 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  e.  ZZ )
2019ad2antrr 725 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  ->  A  e.  ZZ )
21 dvdsval2 13538 . . . . . . . . 9  |-  ( ( y  e.  ZZ  /\  y  =/=  0  /\  A  e.  ZZ )  ->  (
y  ||  A  <->  ( A  /  y )  e.  ZZ ) )
2215, 18, 20, 21syl3anc 1218 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  ||  A  <->  ( A  /  y )  e.  ZZ ) )
2316, 22mpbid 210 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( A  /  y
)  e.  ZZ )
2420zcnd 10748 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  ->  A  e.  CC )
25 nncn 10330 . . . . . . . . . 10  |-  ( y  e.  NN  ->  y  e.  CC )
2625ad2antrl 727 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  e.  CC )
2724, 26, 18divcan2d 10109 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  x.  ( A  /  y ) )  =  A )
28 simplr 754 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  ->  A  e.  I )
2927, 28eqeltrd 2517 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  x.  ( A  /  y ) )  e.  I )
302subrgbas 16874 . . . . . . . . 9  |-  ( ZZ  e.  (SubRing ` fld )  ->  ZZ  =  ( Base `  Z )
)
311, 30ax-mp 5 . . . . . . . 8  |-  ZZ  =  ( Base `  Z )
32 eqid 2443 . . . . . . . 8  |-  (Unit `  Z )  =  (Unit `  Z )
33 zex 10655 . . . . . . . . 9  |-  ZZ  e.  _V
34 cnfldmul 17824 . . . . . . . . . 10  |-  x.  =  ( .r ` fld )
352, 34ressmulr 14291 . . . . . . . . 9  |-  ( ZZ  e.  _V  ->  x.  =  ( .r `  Z ) )
3633, 35ax-mp 5 . . . . . . . 8  |-  x.  =  ( .r `  Z )
375, 31, 32, 36irredmul 16801 . . . . . . 7  |-  ( ( y  e.  ZZ  /\  ( A  /  y
)  e.  ZZ  /\  ( y  x.  ( A  /  y ) )  e.  I )  -> 
( y  e.  (Unit `  Z )  \/  ( A  /  y )  e.  (Unit `  Z )
) )
3815, 23, 29, 37syl3anc 1218 . . . . . 6  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  e.  (Unit `  Z )  \/  ( A  /  y )  e.  (Unit `  Z )
) )
392zrngunit 17915 . . . . . . . . . 10  |-  ( y  e.  (Unit `  Z
)  <->  ( y  e.  ZZ  /\  ( abs `  y )  =  1 ) )
4039baib 896 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  (
y  e.  (Unit `  Z )  <->  ( abs `  y )  =  1 ) )
4115, 40syl 16 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  e.  (Unit `  Z )  <->  ( abs `  y )  =  1 ) )
42 nnnn0 10586 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  NN0 )
43 nn0re 10588 . . . . . . . . . . . 12  |-  ( y  e.  NN0  ->  y  e.  RR )
44 nn0ge0 10605 . . . . . . . . . . . 12  |-  ( y  e.  NN0  ->  0  <_ 
y )
4543, 44absidd 12909 . . . . . . . . . . 11  |-  ( y  e.  NN0  ->  ( abs `  y )  =  y )
4642, 45syl 16 . . . . . . . . . 10  |-  ( y  e.  NN  ->  ( abs `  y )  =  y )
4746ad2antrl 727 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( abs `  y
)  =  y )
4847eqeq1d 2451 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( abs `  y
)  =  1  <->  y  =  1 ) )
4941, 48bitrd 253 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  e.  (Unit `  Z )  <->  y  = 
1 ) )
502zrngunit 17915 . . . . . . . . . 10  |-  ( ( A  /  y )  e.  (Unit `  Z
)  <->  ( ( A  /  y )  e.  ZZ  /\  ( abs `  ( A  /  y
) )  =  1 ) )
5150baib 896 . . . . . . . . 9  |-  ( ( A  /  y )  e.  ZZ  ->  (
( A  /  y
)  e.  (Unit `  Z )  <->  ( abs `  ( A  /  y
) )  =  1 ) )
5223, 51syl 16 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( A  / 
y )  e.  (Unit `  Z )  <->  ( abs `  ( A  /  y
) )  =  1 ) )
53 nnre 10329 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  A  e.  RR )
5453ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  ->  A  e.  RR )
55 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  e.  NN )
5654, 55nndivred 10370 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( A  /  y
)  e.  RR )
57 nnnn0 10586 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  A  e.  NN0 )
58 nn0ge0 10605 . . . . . . . . . . . . . 14  |-  ( A  e.  NN0  ->  0  <_  A )
5957, 58syl 16 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  0  <_  A )
6059ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
0  <_  A )
6155nnred 10337 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  e.  RR )
62 nngt0 10351 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  0  <  y )
6362ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
0  <  y )
64 divge0 10198 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( y  e.  RR  /\  0  <  y ) )  ->  0  <_  ( A  /  y ) )
6554, 60, 61, 63, 64syl22anc 1219 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
0  <_  ( A  /  y ) )
6656, 65absidd 12909 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( abs `  ( A  /  y ) )  =  ( A  / 
y ) )
6766eqeq1d 2451 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( abs `  ( A  /  y ) )  =  1  <->  ( A  /  y )  =  1 ) )
68 ax-1cn 9340 . . . . . . . . . . 11  |-  1  e.  CC
6968a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
1  e.  CC )
7024, 26, 69, 18divmuld 10129 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( A  / 
y )  =  1  <-> 
( y  x.  1 )  =  A ) )
7126mulid1d 9403 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  x.  1 )  =  y )
7271eqeq1d 2451 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( y  x.  1 )  =  A  <-> 
y  =  A ) )
7367, 70, 723bitrd 279 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( abs `  ( A  /  y ) )  =  1  <->  y  =  A ) )
7452, 73bitrd 253 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( A  / 
y )  e.  (Unit `  Z )  <->  y  =  A ) )
7549, 74orbi12d 709 . . . . . 6  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( y  e.  (Unit `  Z )  \/  ( A  /  y
)  e.  (Unit `  Z ) )  <->  ( y  =  1  \/  y  =  A ) ) )
7638, 75mpbid 210 . . . . 5  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  =  1  \/  y  =  A ) )
7776expr 615 . . . 4  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  y  e.  NN )  ->  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) ) )
7877ralrimiva 2799 . . 3  |-  ( ( A  e.  NN  /\  A  e.  I )  ->  A. y  e.  NN  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) ) )
79 isprm2 13771 . . 3  |-  ( A  e.  Prime  <->  ( A  e.  ( ZZ>= `  2 )  /\  A. y  e.  NN  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) ) ) )
8013, 78, 79sylanbrc 664 . 2  |-  ( ( A  e.  NN  /\  A  e.  I )  ->  A  e.  Prime )
81 prmz 13767 . . . 4  |-  ( A  e.  Prime  ->  A  e.  ZZ )
82 1nprm 13768 . . . . 5  |-  -.  1  e.  Prime
832zrngunit 17915 . . . . . 6  |-  ( A  e.  (Unit `  Z
)  <->  ( A  e.  ZZ  /\  ( abs `  A )  =  1 ) )
84 prmnn 13766 . . . . . . . . . 10  |-  ( A  e.  Prime  ->  A  e.  NN )
85 nn0re 10588 . . . . . . . . . . 11  |-  ( A  e.  NN0  ->  A  e.  RR )
8685, 58absidd 12909 . . . . . . . . . 10  |-  ( A  e.  NN0  ->  ( abs `  A )  =  A )
8784, 57, 863syl 20 . . . . . . . . 9  |-  ( A  e.  Prime  ->  ( abs `  A )  =  A )
88 id 22 . . . . . . . . 9  |-  ( A  e.  Prime  ->  A  e. 
Prime )
8987, 88eqeltrd 2517 . . . . . . . 8  |-  ( A  e.  Prime  ->  ( abs `  A )  e.  Prime )
90 eleq1 2503 . . . . . . . 8  |-  ( ( abs `  A )  =  1  ->  (
( abs `  A
)  e.  Prime  <->  1  e.  Prime ) )
9189, 90syl5ibcom 220 . . . . . . 7  |-  ( A  e.  Prime  ->  ( ( abs `  A )  =  1  ->  1  e.  Prime ) )
9291adantld 467 . . . . . 6  |-  ( A  e.  Prime  ->  ( ( A  e.  ZZ  /\  ( abs `  A )  =  1 )  -> 
1  e.  Prime )
)
9383, 92syl5bi 217 . . . . 5  |-  ( A  e.  Prime  ->  ( A  e.  (Unit `  Z
)  ->  1  e.  Prime ) )
9482, 93mtoi 178 . . . 4  |-  ( A  e.  Prime  ->  -.  A  e.  (Unit `  Z )
)
95 simplrl 759 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  x  e.  ZZ )
9695zcnd 10748 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  x  e.  CC )
9784ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  A  e.  NN )
9897nnne0d 10366 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  A  =/=  0 )
99 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
x  x.  y )  =  A )
100 simplrr 760 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  y  e.  ZZ )
101100zcnd 10748 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  y  e.  CC )
102101mul02d 9567 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
0  x.  y )  =  0 )
10398, 99, 1023netr4d 2635 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
x  x.  y )  =/=  ( 0  x.  y ) )
104 oveq1 6098 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
x  x.  y )  =  ( 0  x.  y ) )
105104necon3i 2650 . . . . . . . . . . . 12  |-  ( ( x  x.  y )  =/=  ( 0  x.  y )  ->  x  =/=  0 )
106103, 105syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  x  =/=  0 )
10796, 106absne0d 12933 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  =/=  0 )
108107neneqd 2624 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  -.  ( abs `  x )  =  0 )
109 nn0abscl 12801 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  ( abs `  x )  e. 
NN0 )
11095, 109syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  e. 
NN0 )
111 elnn0 10581 . . . . . . . . . . 11  |-  ( ( abs `  x )  e.  NN0  <->  ( ( abs `  x )  e.  NN  \/  ( abs `  x
)  =  0 ) )
112110, 111sylib 196 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( abs `  x
)  e.  NN  \/  ( abs `  x )  =  0 ) )
113112ord 377 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( -.  ( abs `  x
)  e.  NN  ->  ( abs `  x )  =  0 ) )
114108, 113mt3d 125 . . . . . . . 8  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  e.  NN )
11579simprbi 464 . . . . . . . . 9  |-  ( A  e.  Prime  ->  A. y  e.  NN  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) ) )
116115ad2antrr 725 . . . . . . . 8  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  A. y  e.  NN  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) ) )
117 dvdsmul1 13554 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  x  ||  ( x  x.  y ) )
118117ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  x  ||  ( x  x.  y
) )
119118, 99breqtrd 4316 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  x  ||  A )
12081ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  A  e.  ZZ )
121 absdvdsb 13551 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  A  e.  ZZ )  ->  ( x  ||  A  <->  ( abs `  x ) 
||  A ) )
12295, 120, 121syl2anc 661 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
x  ||  A  <->  ( abs `  x )  ||  A
) )
123119, 122mpbid 210 . . . . . . . 8  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  ||  A )
124 breq1 4295 . . . . . . . . . 10  |-  ( y  =  ( abs `  x
)  ->  ( y  ||  A  <->  ( abs `  x
)  ||  A )
)
125 eqeq1 2449 . . . . . . . . . . 11  |-  ( y  =  ( abs `  x
)  ->  ( y  =  1  <->  ( abs `  x )  =  1 ) )
126 eqeq1 2449 . . . . . . . . . . 11  |-  ( y  =  ( abs `  x
)  ->  ( y  =  A  <->  ( abs `  x
)  =  A ) )
127125, 126orbi12d 709 . . . . . . . . . 10  |-  ( y  =  ( abs `  x
)  ->  ( (
y  =  1  \/  y  =  A )  <-> 
( ( abs `  x
)  =  1  \/  ( abs `  x
)  =  A ) ) )
128124, 127imbi12d 320 . . . . . . . . 9  |-  ( y  =  ( abs `  x
)  ->  ( (
y  ||  A  ->  ( y  =  1  \/  y  =  A ) )  <->  ( ( abs `  x )  ||  A  ->  ( ( abs `  x
)  =  1  \/  ( abs `  x
)  =  A ) ) ) )
129128rspcv 3069 . . . . . . . 8  |-  ( ( abs `  x )  e.  NN  ->  ( A. y  e.  NN  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) )  ->  (
( abs `  x
)  ||  A  ->  ( ( abs `  x
)  =  1  \/  ( abs `  x
)  =  A ) ) ) )
130114, 116, 123, 129syl3c 61 . . . . . . 7  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( abs `  x
)  =  1  \/  ( abs `  x
)  =  A ) )
1312zrngunit 17915 . . . . . . . . . 10  |-  ( x  e.  (Unit `  Z
)  <->  ( x  e.  ZZ  /\  ( abs `  x )  =  1 ) )
132131baib 896 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  (
x  e.  (Unit `  Z )  <->  ( abs `  x )  =  1 ) )
13395, 132syl 16 . . . . . . . 8  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
x  e.  (Unit `  Z )  <->  ( abs `  x )  =  1 ) )
134100, 40syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
y  e.  (Unit `  Z )  <->  ( abs `  y )  =  1 ) )
135101abscld 12922 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  y )  e.  RR )
136135recnd 9412 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  y )  e.  CC )
13768a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  1  e.  CC )
13896abscld 12922 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  e.  RR )
139138recnd 9412 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  e.  CC )
140136, 137, 139, 107mulcand 9969 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( ( abs `  x
)  x.  ( abs `  y ) )  =  ( ( abs `  x
)  x.  1 )  <-> 
( abs `  y
)  =  1 ) )
14199fveq2d 5695 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  ( x  x.  y ) )  =  ( abs `  A
) )
14296, 101absmuld 12940 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  ( x  x.  y ) )  =  ( ( abs `  x
)  x.  ( abs `  y ) ) )
14387ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  A )  =  A )
144141, 142, 1433eqtr3d 2483 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( abs `  x
)  x.  ( abs `  y ) )  =  A )
145139mulid1d 9403 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( abs `  x
)  x.  1 )  =  ( abs `  x
) )
146144, 145eqeq12d 2457 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( ( abs `  x
)  x.  ( abs `  y ) )  =  ( ( abs `  x
)  x.  1 )  <-> 
A  =  ( abs `  x ) ) )
147 eqcom 2445 . . . . . . . . . 10  |-  ( A  =  ( abs `  x
)  <->  ( abs `  x
)  =  A )
148146, 147syl6bb 261 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( ( abs `  x
)  x.  ( abs `  y ) )  =  ( ( abs `  x
)  x.  1 )  <-> 
( abs `  x
)  =  A ) )
149134, 140, 1483bitr2d 281 . . . . . . . 8  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
y  e.  (Unit `  Z )  <->  ( abs `  x )  =  A ) )
150133, 149orbi12d 709 . . . . . . 7  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( x  e.  (Unit `  Z )  \/  y  e.  (Unit `  Z )
)  <->  ( ( abs `  x )  =  1  \/  ( abs `  x
)  =  A ) ) )
151130, 150mpbird 232 . . . . . 6  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
x  e.  (Unit `  Z )  \/  y  e.  (Unit `  Z )
) )
152151ex 434 . . . . 5  |-  ( ( A  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  x.  y )  =  A  ->  (
x  e.  (Unit `  Z )  \/  y  e.  (Unit `  Z )
) ) )
153152ralrimivva 2808 . . . 4  |-  ( A  e.  Prime  ->  A. x  e.  ZZ  A. y  e.  ZZ  ( ( x  x.  y )  =  A  ->  ( x  e.  (Unit `  Z )  \/  y  e.  (Unit `  Z ) ) ) )
15431, 32, 5, 36isirred2 16793 . . . 4  |-  ( A  e.  I  <->  ( A  e.  ZZ  /\  -.  A  e.  (Unit `  Z )  /\  A. x  e.  ZZ  A. y  e.  ZZ  (
( x  x.  y
)  =  A  -> 
( x  e.  (Unit `  Z )  \/  y  e.  (Unit `  Z )
) ) ) )
15581, 94, 153, 154syl3anbrc 1172 . . 3  |-  ( A  e.  Prime  ->  A  e.  I )
156155adantl 466 . 2  |-  ( ( A  e.  NN  /\  A  e.  Prime )  ->  A  e.  I )
15780, 156impbida 828 1  |-  ( A  e.  NN  ->  ( A  e.  I  <->  A  e.  Prime ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2606   A.wral 2715   _Vcvv 2972   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   CCcc 9280   RRcr 9281   0cc0 9282   1c1 9283    x. cmul 9287    < clt 9418    <_ cle 9419    / cdiv 9993   NNcn 10322   2c2 10371   NN0cn0 10579   ZZcz 10646   ZZ>=cuz 10861   abscabs 12723    || cdivides 13535   Primecprime 13763   Basecbs 14174   ↾s cress 14175   .rcmulr 14239   1rcur 16603   Ringcrg 16645  Unitcui 16731  Irredcir 16732  SubRingcsubrg 16861  ℂfldccnfld 17818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360  ax-addf 9361  ax-mulf 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-tpos 6745  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-sup 7691  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-rp 10992  df-fz 11438  df-seq 11807  df-exp 11866  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-dvds 13536  df-prm 13764  df-gz 13991  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-starv 14253  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-0g 14380  df-mnd 15415  df-grp 15545  df-minusg 15546  df-subg 15678  df-cmn 16279  df-mgp 16592  df-ur 16604  df-rng 16647  df-cring 16648  df-oppr 16715  df-dvdsr 16733  df-unit 16734  df-irred 16735  df-invr 16764  df-dvr 16775  df-drng 16834  df-subrg 16863  df-cnfld 17819
This theorem is referenced by:  dfprm2OLD  17921  prmirredOLD  17922
  Copyright terms: Public domain W3C validator