MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmirredlem Structured version   Unicode version

Theorem prmirredlem 18306
Description: A positive integer is irreducible over  ZZ iff it is a prime number. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
Hypothesis
Ref Expression
prmirred.i  |-  I  =  (Irred ` ring )
Assertion
Ref Expression
prmirredlem  |-  ( A  e.  NN  ->  ( A  e.  I  <->  A  e.  Prime ) )

Proof of Theorem prmirredlem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringrng 18275 . . . . . 6  |-ring  e.  Ring
2 prmirred.i . . . . . . 7  |-  I  =  (Irred ` ring )
3 zring1 18283 . . . . . . 7  |-  1  =  ( 1r ` ring )
42, 3irredn1 17151 . . . . . 6  |-  ( (ring  e. 
Ring  /\  A  e.  I
)  ->  A  =/=  1 )
51, 4mpan 670 . . . . 5  |-  ( A  e.  I  ->  A  =/=  1 )
65anim2i 569 . . . 4  |-  ( ( A  e.  NN  /\  A  e.  I )  ->  ( A  e.  NN  /\  A  =/=  1 ) )
7 eluz2b3 11154 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  A  =/=  1 ) )
86, 7sylibr 212 . . 3  |-  ( ( A  e.  NN  /\  A  e.  I )  ->  A  e.  ( ZZ>= ` 
2 ) )
9 nnz 10885 . . . . . . . 8  |-  ( y  e.  NN  ->  y  e.  ZZ )
109ad2antrl 727 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  e.  ZZ )
11 simprr 756 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  ||  A )
12 nnne0 10567 . . . . . . . . . 10  |-  ( y  e.  NN  ->  y  =/=  0 )
1312ad2antrl 727 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  =/=  0 )
14 nnz 10885 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  e.  ZZ )
1514ad2antrr 725 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  ->  A  e.  ZZ )
16 dvdsval2 13849 . . . . . . . . 9  |-  ( ( y  e.  ZZ  /\  y  =/=  0  /\  A  e.  ZZ )  ->  (
y  ||  A  <->  ( A  /  y )  e.  ZZ ) )
1710, 13, 15, 16syl3anc 1228 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  ||  A  <->  ( A  /  y )  e.  ZZ ) )
1811, 17mpbid 210 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( A  /  y
)  e.  ZZ )
1915zcnd 10966 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  ->  A  e.  CC )
20 nncn 10543 . . . . . . . . . 10  |-  ( y  e.  NN  ->  y  e.  CC )
2120ad2antrl 727 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  e.  CC )
2219, 21, 13divcan2d 10321 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  x.  ( A  /  y ) )  =  A )
23 simplr 754 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  ->  A  e.  I )
2422, 23eqeltrd 2555 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  x.  ( A  /  y ) )  e.  I )
25 zringbas 18278 . . . . . . . 8  |-  ZZ  =  ( Base ` ring )
26 eqid 2467 . . . . . . . 8  |-  (Unit ` ring )  =  (Unit ` ring )
27 zringmulr 18281 . . . . . . . 8  |-  x.  =  ( .r ` ring )
282, 25, 26, 27irredmul 17154 . . . . . . 7  |-  ( ( y  e.  ZZ  /\  ( A  /  y
)  e.  ZZ  /\  ( y  x.  ( A  /  y ) )  e.  I )  -> 
( y  e.  (Unit ` ring )  \/  ( A  /  y )  e.  (Unit ` ring ) ) )
2910, 18, 24, 28syl3anc 1228 . . . . . 6  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  e.  (Unit ` ring )  \/  ( A  /  y )  e.  (Unit ` ring ) ) )
30 zringunit 18303 . . . . . . . . . 10  |-  ( y  e.  (Unit ` ring )  <->  ( y  e.  ZZ  /\  ( abs `  y )  =  1 ) )
3130baib 901 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  (
y  e.  (Unit ` ring )  <->  ( abs `  y )  =  1 ) )
3210, 31syl 16 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  e.  (Unit ` ring ) 
<->  ( abs `  y
)  =  1 ) )
33 nnnn0 10801 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  NN0 )
34 nn0re 10803 . . . . . . . . . . . 12  |-  ( y  e.  NN0  ->  y  e.  RR )
35 nn0ge0 10820 . . . . . . . . . . . 12  |-  ( y  e.  NN0  ->  0  <_ 
y )
3634, 35absidd 13216 . . . . . . . . . . 11  |-  ( y  e.  NN0  ->  ( abs `  y )  =  y )
3733, 36syl 16 . . . . . . . . . 10  |-  ( y  e.  NN  ->  ( abs `  y )  =  y )
3837ad2antrl 727 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( abs `  y
)  =  y )
3938eqeq1d 2469 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( abs `  y
)  =  1  <->  y  =  1 ) )
4032, 39bitrd 253 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  e.  (Unit ` ring ) 
<->  y  =  1 ) )
41 zringunit 18303 . . . . . . . . . 10  |-  ( ( A  /  y )  e.  (Unit ` ring )  <->  ( ( A  /  y )  e.  ZZ  /\  ( abs `  ( A  /  y
) )  =  1 ) )
4241baib 901 . . . . . . . . 9  |-  ( ( A  /  y )  e.  ZZ  ->  (
( A  /  y
)  e.  (Unit ` ring )  <->  ( abs `  ( A  /  y ) )  =  1 ) )
4318, 42syl 16 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( A  / 
y )  e.  (Unit ` ring ) 
<->  ( abs `  ( A  /  y ) )  =  1 ) )
44 nnre 10542 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  A  e.  RR )
4544ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  ->  A  e.  RR )
46 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  e.  NN )
4745, 46nndivred 10583 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( A  /  y
)  e.  RR )
48 nnnn0 10801 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  A  e.  NN0 )
49 nn0ge0 10820 . . . . . . . . . . . . . 14  |-  ( A  e.  NN0  ->  0  <_  A )
5048, 49syl 16 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  0  <_  A )
5150ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
0  <_  A )
5246nnred 10550 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  e.  RR )
53 nngt0 10564 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  0  <  y )
5453ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
0  <  y )
55 divge0 10410 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( y  e.  RR  /\  0  <  y ) )  ->  0  <_  ( A  /  y ) )
5645, 51, 52, 54, 55syl22anc 1229 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
0  <_  ( A  /  y ) )
5747, 56absidd 13216 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( abs `  ( A  /  y ) )  =  ( A  / 
y ) )
5857eqeq1d 2469 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( abs `  ( A  /  y ) )  =  1  <->  ( A  /  y )  =  1 ) )
59 1cnd 9611 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
1  e.  CC )
6019, 21, 59, 13divmuld 10341 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( A  / 
y )  =  1  <-> 
( y  x.  1 )  =  A ) )
6121mulid1d 9612 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  x.  1 )  =  y )
6261eqeq1d 2469 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( y  x.  1 )  =  A  <-> 
y  =  A ) )
6358, 60, 623bitrd 279 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( abs `  ( A  /  y ) )  =  1  <->  y  =  A ) )
6443, 63bitrd 253 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( A  / 
y )  e.  (Unit ` ring ) 
<->  y  =  A ) )
6540, 64orbi12d 709 . . . . . 6  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( y  e.  (Unit ` ring )  \/  ( A  /  y )  e.  (Unit ` ring ) )  <->  ( y  =  1  \/  y  =  A ) ) )
6629, 65mpbid 210 . . . . 5  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  =  1  \/  y  =  A ) )
6766expr 615 . . . 4  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  y  e.  NN )  ->  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) ) )
6867ralrimiva 2878 . . 3  |-  ( ( A  e.  NN  /\  A  e.  I )  ->  A. y  e.  NN  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) ) )
69 isprm2 14083 . . 3  |-  ( A  e.  Prime  <->  ( A  e.  ( ZZ>= `  2 )  /\  A. y  e.  NN  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) ) ) )
708, 68, 69sylanbrc 664 . 2  |-  ( ( A  e.  NN  /\  A  e.  I )  ->  A  e.  Prime )
71 prmz 14079 . . . 4  |-  ( A  e.  Prime  ->  A  e.  ZZ )
72 1nprm 14080 . . . . 5  |-  -.  1  e.  Prime
73 zringunit 18303 . . . . . 6  |-  ( A  e.  (Unit ` ring )  <->  ( A  e.  ZZ  /\  ( abs `  A )  =  1 ) )
74 prmnn 14078 . . . . . . . . . 10  |-  ( A  e.  Prime  ->  A  e.  NN )
75 nn0re 10803 . . . . . . . . . . 11  |-  ( A  e.  NN0  ->  A  e.  RR )
7675, 49absidd 13216 . . . . . . . . . 10  |-  ( A  e.  NN0  ->  ( abs `  A )  =  A )
7774, 48, 763syl 20 . . . . . . . . 9  |-  ( A  e.  Prime  ->  ( abs `  A )  =  A )
78 id 22 . . . . . . . . 9  |-  ( A  e.  Prime  ->  A  e. 
Prime )
7977, 78eqeltrd 2555 . . . . . . . 8  |-  ( A  e.  Prime  ->  ( abs `  A )  e.  Prime )
80 eleq1 2539 . . . . . . . 8  |-  ( ( abs `  A )  =  1  ->  (
( abs `  A
)  e.  Prime  <->  1  e.  Prime ) )
8179, 80syl5ibcom 220 . . . . . . 7  |-  ( A  e.  Prime  ->  ( ( abs `  A )  =  1  ->  1  e.  Prime ) )
8281adantld 467 . . . . . 6  |-  ( A  e.  Prime  ->  ( ( A  e.  ZZ  /\  ( abs `  A )  =  1 )  -> 
1  e.  Prime )
)
8373, 82syl5bi 217 . . . . 5  |-  ( A  e.  Prime  ->  ( A  e.  (Unit ` ring )  ->  1  e. 
Prime ) )
8472, 83mtoi 178 . . . 4  |-  ( A  e.  Prime  ->  -.  A  e.  (Unit ` ring ) )
85 simplrl 759 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  x  e.  ZZ )
8685zcnd 10966 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  x  e.  CC )
8774ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  A  e.  NN )
8887nnne0d 10579 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  A  =/=  0 )
89 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
x  x.  y )  =  A )
90 simplrr 760 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  y  e.  ZZ )
9190zcnd 10966 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  y  e.  CC )
9291mul02d 9776 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
0  x.  y )  =  0 )
9388, 89, 923netr4d 2772 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
x  x.  y )  =/=  ( 0  x.  y ) )
94 oveq1 6290 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
x  x.  y )  =  ( 0  x.  y ) )
9594necon3i 2707 . . . . . . . . . . . 12  |-  ( ( x  x.  y )  =/=  ( 0  x.  y )  ->  x  =/=  0 )
9693, 95syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  x  =/=  0 )
9786, 96absne0d 13240 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  =/=  0 )
9897neneqd 2669 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  -.  ( abs `  x )  =  0 )
99 nn0abscl 13107 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  ( abs `  x )  e. 
NN0 )
10085, 99syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  e. 
NN0 )
101 elnn0 10796 . . . . . . . . . . 11  |-  ( ( abs `  x )  e.  NN0  <->  ( ( abs `  x )  e.  NN  \/  ( abs `  x
)  =  0 ) )
102100, 101sylib 196 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( abs `  x
)  e.  NN  \/  ( abs `  x )  =  0 ) )
103102ord 377 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( -.  ( abs `  x
)  e.  NN  ->  ( abs `  x )  =  0 ) )
10498, 103mt3d 125 . . . . . . . 8  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  e.  NN )
10569simprbi 464 . . . . . . . . 9  |-  ( A  e.  Prime  ->  A. y  e.  NN  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) ) )
106105ad2antrr 725 . . . . . . . 8  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  A. y  e.  NN  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) ) )
107 dvdsmul1 13865 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  x  ||  ( x  x.  y ) )
108107ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  x  ||  ( x  x.  y
) )
109108, 89breqtrd 4471 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  x  ||  A )
11071ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  A  e.  ZZ )
111 absdvdsb 13862 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  A  e.  ZZ )  ->  ( x  ||  A  <->  ( abs `  x ) 
||  A ) )
11285, 110, 111syl2anc 661 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
x  ||  A  <->  ( abs `  x )  ||  A
) )
113109, 112mpbid 210 . . . . . . . 8  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  ||  A )
114 breq1 4450 . . . . . . . . . 10  |-  ( y  =  ( abs `  x
)  ->  ( y  ||  A  <->  ( abs `  x
)  ||  A )
)
115 eqeq1 2471 . . . . . . . . . . 11  |-  ( y  =  ( abs `  x
)  ->  ( y  =  1  <->  ( abs `  x )  =  1 ) )
116 eqeq1 2471 . . . . . . . . . . 11  |-  ( y  =  ( abs `  x
)  ->  ( y  =  A  <->  ( abs `  x
)  =  A ) )
117115, 116orbi12d 709 . . . . . . . . . 10  |-  ( y  =  ( abs `  x
)  ->  ( (
y  =  1  \/  y  =  A )  <-> 
( ( abs `  x
)  =  1  \/  ( abs `  x
)  =  A ) ) )
118114, 117imbi12d 320 . . . . . . . . 9  |-  ( y  =  ( abs `  x
)  ->  ( (
y  ||  A  ->  ( y  =  1  \/  y  =  A ) )  <->  ( ( abs `  x )  ||  A  ->  ( ( abs `  x
)  =  1  \/  ( abs `  x
)  =  A ) ) ) )
119118rspcv 3210 . . . . . . . 8  |-  ( ( abs `  x )  e.  NN  ->  ( A. y  e.  NN  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) )  ->  (
( abs `  x
)  ||  A  ->  ( ( abs `  x
)  =  1  \/  ( abs `  x
)  =  A ) ) ) )
120104, 106, 113, 119syl3c 61 . . . . . . 7  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( abs `  x
)  =  1  \/  ( abs `  x
)  =  A ) )
121 zringunit 18303 . . . . . . . . . 10  |-  ( x  e.  (Unit ` ring )  <->  ( x  e.  ZZ  /\  ( abs `  x )  =  1 ) )
122121baib 901 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  (
x  e.  (Unit ` ring )  <->  ( abs `  x )  =  1 ) )
12385, 122syl 16 . . . . . . . 8  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
x  e.  (Unit ` ring )  <->  ( abs `  x )  =  1 ) )
12490, 31syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
y  e.  (Unit ` ring )  <->  ( abs `  y )  =  1 ) )
12591abscld 13229 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  y )  e.  RR )
126125recnd 9621 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  y )  e.  CC )
127 1cnd 9611 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  1  e.  CC )
12886abscld 13229 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  e.  RR )
129128recnd 9621 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  e.  CC )
130126, 127, 129, 97mulcand 10181 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( ( abs `  x
)  x.  ( abs `  y ) )  =  ( ( abs `  x
)  x.  1 )  <-> 
( abs `  y
)  =  1 ) )
13189fveq2d 5869 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  ( x  x.  y ) )  =  ( abs `  A
) )
13286, 91absmuld 13247 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  ( x  x.  y ) )  =  ( ( abs `  x
)  x.  ( abs `  y ) ) )
13377ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  A )  =  A )
134131, 132, 1333eqtr3d 2516 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( abs `  x
)  x.  ( abs `  y ) )  =  A )
135129mulid1d 9612 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( abs `  x
)  x.  1 )  =  ( abs `  x
) )
136134, 135eqeq12d 2489 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( ( abs `  x
)  x.  ( abs `  y ) )  =  ( ( abs `  x
)  x.  1 )  <-> 
A  =  ( abs `  x ) ) )
137 eqcom 2476 . . . . . . . . . 10  |-  ( A  =  ( abs `  x
)  <->  ( abs `  x
)  =  A )
138136, 137syl6bb 261 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( ( abs `  x
)  x.  ( abs `  y ) )  =  ( ( abs `  x
)  x.  1 )  <-> 
( abs `  x
)  =  A ) )
139124, 130, 1383bitr2d 281 . . . . . . . 8  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
y  e.  (Unit ` ring )  <->  ( abs `  x )  =  A ) )
140123, 139orbi12d 709 . . . . . . 7  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( x  e.  (Unit ` ring )  \/  y  e.  (Unit ` ring ) )  <->  ( ( abs `  x )  =  1  \/  ( abs `  x )  =  A ) ) )
141120, 140mpbird 232 . . . . . 6  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
x  e.  (Unit ` ring )  \/  y  e.  (Unit ` ring ) ) )
142141ex 434 . . . . 5  |-  ( ( A  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  x.  y )  =  A  ->  (
x  e.  (Unit ` ring )  \/  y  e.  (Unit ` ring ) ) ) )
143142ralrimivva 2885 . . . 4  |-  ( A  e.  Prime  ->  A. x  e.  ZZ  A. y  e.  ZZ  ( ( x  x.  y )  =  A  ->  ( x  e.  (Unit ` ring )  \/  y  e.  (Unit ` ring ) ) ) )
14425, 26, 2, 27isirred2 17146 . . . 4  |-  ( A  e.  I  <->  ( A  e.  ZZ  /\  -.  A  e.  (Unit ` ring )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( ( x  x.  y )  =  A  ->  ( x  e.  (Unit ` ring )  \/  y  e.  (Unit ` ring ) ) ) ) )
14571, 84, 143, 144syl3anbrc 1180 . . 3  |-  ( A  e.  Prime  ->  A  e.  I )
146145adantl 466 . 2  |-  ( ( A  e.  NN  /\  A  e.  Prime )  ->  A  e.  I )
14770, 146impbida 830 1  |-  ( A  e.  NN  ->  ( A  e.  I  <->  A  e.  Prime ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   class class class wbr 4447   ` cfv 5587  (class class class)co 6283   CCcc 9489   RRcr 9490   0cc0 9491   1c1 9492    x. cmul 9496    < clt 9627    <_ cle 9628    / cdiv 10205   NNcn 10535   2c2 10584   NN0cn0 10794   ZZcz 10863   ZZ>=cuz 11081   abscabs 13029    || cdivides 13846   Primecprime 14075   Ringcrg 16995  Unitcui 17084  Irredcir 17085  ℤringzring 18272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569  ax-addf 9570  ax-mulf 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-om 6680  df-1st 6784  df-2nd 6785  df-tpos 6955  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7900  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-4 10595  df-5 10596  df-6 10597  df-7 10598  df-8 10599  df-9 10600  df-10 10601  df-n0 10795  df-z 10864  df-dec 10976  df-uz 11082  df-rp 11220  df-fz 11672  df-seq 12075  df-exp 12134  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-dvds 13847  df-prm 14076  df-gz 14306  df-struct 14491  df-ndx 14492  df-slot 14493  df-base 14494  df-sets 14495  df-ress 14496  df-plusg 14567  df-mulr 14568  df-starv 14569  df-tset 14573  df-ple 14574  df-ds 14576  df-unif 14577  df-0g 14696  df-mnd 15731  df-grp 15864  df-minusg 15865  df-subg 16000  df-cmn 16603  df-mgp 16941  df-ur 16953  df-rng 16997  df-cring 16998  df-oppr 17068  df-dvdsr 17086  df-unit 17087  df-irred 17088  df-invr 17117  df-dvr 17128  df-drng 17193  df-subrg 17222  df-cnfld 18208  df-zring 18273
This theorem is referenced by:  dfprm2  18307  prmirred  18308
  Copyright terms: Public domain W3C validator