MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmirredlem Structured version   Unicode version

Theorem prmirredlem 17917
Description: A positive integer is irreducible over  ZZ iff it is a prime number. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
Hypothesis
Ref Expression
prmirred.i  |-  I  =  (Irred ` ring )
Assertion
Ref Expression
prmirredlem  |-  ( A  e.  NN  ->  ( A  e.  I  <->  A  e.  Prime ) )

Proof of Theorem prmirredlem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringrng 17886 . . . . . 6  |-ring  e.  Ring
2 prmirred.i . . . . . . 7  |-  I  =  (Irred ` ring )
3 zring1 17894 . . . . . . 7  |-  1  =  ( 1r ` ring )
42, 3irredn1 16798 . . . . . 6  |-  ( (ring  e. 
Ring  /\  A  e.  I
)  ->  A  =/=  1 )
51, 4mpan 670 . . . . 5  |-  ( A  e.  I  ->  A  =/=  1 )
65anim2i 569 . . . 4  |-  ( ( A  e.  NN  /\  A  e.  I )  ->  ( A  e.  NN  /\  A  =/=  1 ) )
7 eluz2b3 10928 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  A  =/=  1 ) )
86, 7sylibr 212 . . 3  |-  ( ( A  e.  NN  /\  A  e.  I )  ->  A  e.  ( ZZ>= ` 
2 ) )
9 nnz 10668 . . . . . . . 8  |-  ( y  e.  NN  ->  y  e.  ZZ )
109ad2antrl 727 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  e.  ZZ )
11 simprr 756 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  ||  A )
12 nnne0 10354 . . . . . . . . . 10  |-  ( y  e.  NN  ->  y  =/=  0 )
1312ad2antrl 727 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  =/=  0 )
14 nnz 10668 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  e.  ZZ )
1514ad2antrr 725 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  ->  A  e.  ZZ )
16 dvdsval2 13538 . . . . . . . . 9  |-  ( ( y  e.  ZZ  /\  y  =/=  0  /\  A  e.  ZZ )  ->  (
y  ||  A  <->  ( A  /  y )  e.  ZZ ) )
1710, 13, 15, 16syl3anc 1218 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  ||  A  <->  ( A  /  y )  e.  ZZ ) )
1811, 17mpbid 210 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( A  /  y
)  e.  ZZ )
1915zcnd 10748 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  ->  A  e.  CC )
20 nncn 10330 . . . . . . . . . 10  |-  ( y  e.  NN  ->  y  e.  CC )
2120ad2antrl 727 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  e.  CC )
2219, 21, 13divcan2d 10109 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  x.  ( A  /  y ) )  =  A )
23 simplr 754 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  ->  A  e.  I )
2422, 23eqeltrd 2517 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  x.  ( A  /  y ) )  e.  I )
25 zringbas 17889 . . . . . . . 8  |-  ZZ  =  ( Base ` ring )
26 eqid 2443 . . . . . . . 8  |-  (Unit ` ring )  =  (Unit ` ring )
27 zringmulr 17892 . . . . . . . 8  |-  x.  =  ( .r ` ring )
282, 25, 26, 27irredmul 16801 . . . . . . 7  |-  ( ( y  e.  ZZ  /\  ( A  /  y
)  e.  ZZ  /\  ( y  x.  ( A  /  y ) )  e.  I )  -> 
( y  e.  (Unit ` ring )  \/  ( A  /  y )  e.  (Unit ` ring ) ) )
2910, 18, 24, 28syl3anc 1218 . . . . . 6  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  e.  (Unit ` ring )  \/  ( A  /  y )  e.  (Unit ` ring ) ) )
30 zringunit 17914 . . . . . . . . . 10  |-  ( y  e.  (Unit ` ring )  <->  ( y  e.  ZZ  /\  ( abs `  y )  =  1 ) )
3130baib 896 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  (
y  e.  (Unit ` ring )  <->  ( abs `  y )  =  1 ) )
3210, 31syl 16 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  e.  (Unit ` ring ) 
<->  ( abs `  y
)  =  1 ) )
33 nnnn0 10586 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  NN0 )
34 nn0re 10588 . . . . . . . . . . . 12  |-  ( y  e.  NN0  ->  y  e.  RR )
35 nn0ge0 10605 . . . . . . . . . . . 12  |-  ( y  e.  NN0  ->  0  <_ 
y )
3634, 35absidd 12909 . . . . . . . . . . 11  |-  ( y  e.  NN0  ->  ( abs `  y )  =  y )
3733, 36syl 16 . . . . . . . . . 10  |-  ( y  e.  NN  ->  ( abs `  y )  =  y )
3837ad2antrl 727 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( abs `  y
)  =  y )
3938eqeq1d 2451 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( abs `  y
)  =  1  <->  y  =  1 ) )
4032, 39bitrd 253 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  e.  (Unit ` ring ) 
<->  y  =  1 ) )
41 zringunit 17914 . . . . . . . . . 10  |-  ( ( A  /  y )  e.  (Unit ` ring )  <->  ( ( A  /  y )  e.  ZZ  /\  ( abs `  ( A  /  y
) )  =  1 ) )
4241baib 896 . . . . . . . . 9  |-  ( ( A  /  y )  e.  ZZ  ->  (
( A  /  y
)  e.  (Unit ` ring )  <->  ( abs `  ( A  /  y ) )  =  1 ) )
4318, 42syl 16 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( A  / 
y )  e.  (Unit ` ring ) 
<->  ( abs `  ( A  /  y ) )  =  1 ) )
44 nnre 10329 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  A  e.  RR )
4544ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  ->  A  e.  RR )
46 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  e.  NN )
4745, 46nndivred 10370 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( A  /  y
)  e.  RR )
48 nnnn0 10586 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  A  e.  NN0 )
49 nn0ge0 10605 . . . . . . . . . . . . . 14  |-  ( A  e.  NN0  ->  0  <_  A )
5048, 49syl 16 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  0  <_  A )
5150ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
0  <_  A )
5246nnred 10337 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
y  e.  RR )
53 nngt0 10351 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  0  <  y )
5453ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
0  <  y )
55 divge0 10198 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( y  e.  RR  /\  0  <  y ) )  ->  0  <_  ( A  /  y ) )
5645, 51, 52, 54, 55syl22anc 1219 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
0  <_  ( A  /  y ) )
5747, 56absidd 12909 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( abs `  ( A  /  y ) )  =  ( A  / 
y ) )
5857eqeq1d 2451 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( abs `  ( A  /  y ) )  =  1  <->  ( A  /  y )  =  1 ) )
59 1cnd 9402 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
1  e.  CC )
6019, 21, 59, 13divmuld 10129 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( A  / 
y )  =  1  <-> 
( y  x.  1 )  =  A ) )
6121mulid1d 9403 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  x.  1 )  =  y )
6261eqeq1d 2451 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( y  x.  1 )  =  A  <-> 
y  =  A ) )
6358, 60, 623bitrd 279 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( abs `  ( A  /  y ) )  =  1  <->  y  =  A ) )
6443, 63bitrd 253 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( A  / 
y )  e.  (Unit ` ring ) 
<->  y  =  A ) )
6540, 64orbi12d 709 . . . . . 6  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( ( y  e.  (Unit ` ring )  \/  ( A  /  y )  e.  (Unit ` ring ) )  <->  ( y  =  1  \/  y  =  A ) ) )
6629, 65mpbid 210 . . . . 5  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  ( y  e.  NN  /\  y  ||  A ) )  -> 
( y  =  1  \/  y  =  A ) )
6766expr 615 . . . 4  |-  ( ( ( A  e.  NN  /\  A  e.  I )  /\  y  e.  NN )  ->  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) ) )
6867ralrimiva 2799 . . 3  |-  ( ( A  e.  NN  /\  A  e.  I )  ->  A. y  e.  NN  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) ) )
69 isprm2 13771 . . 3  |-  ( A  e.  Prime  <->  ( A  e.  ( ZZ>= `  2 )  /\  A. y  e.  NN  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) ) ) )
708, 68, 69sylanbrc 664 . 2  |-  ( ( A  e.  NN  /\  A  e.  I )  ->  A  e.  Prime )
71 prmz 13767 . . . 4  |-  ( A  e.  Prime  ->  A  e.  ZZ )
72 1nprm 13768 . . . . 5  |-  -.  1  e.  Prime
73 zringunit 17914 . . . . . 6  |-  ( A  e.  (Unit ` ring )  <->  ( A  e.  ZZ  /\  ( abs `  A )  =  1 ) )
74 prmnn 13766 . . . . . . . . . 10  |-  ( A  e.  Prime  ->  A  e.  NN )
75 nn0re 10588 . . . . . . . . . . 11  |-  ( A  e.  NN0  ->  A  e.  RR )
7675, 49absidd 12909 . . . . . . . . . 10  |-  ( A  e.  NN0  ->  ( abs `  A )  =  A )
7774, 48, 763syl 20 . . . . . . . . 9  |-  ( A  e.  Prime  ->  ( abs `  A )  =  A )
78 id 22 . . . . . . . . 9  |-  ( A  e.  Prime  ->  A  e. 
Prime )
7977, 78eqeltrd 2517 . . . . . . . 8  |-  ( A  e.  Prime  ->  ( abs `  A )  e.  Prime )
80 eleq1 2503 . . . . . . . 8  |-  ( ( abs `  A )  =  1  ->  (
( abs `  A
)  e.  Prime  <->  1  e.  Prime ) )
8179, 80syl5ibcom 220 . . . . . . 7  |-  ( A  e.  Prime  ->  ( ( abs `  A )  =  1  ->  1  e.  Prime ) )
8281adantld 467 . . . . . 6  |-  ( A  e.  Prime  ->  ( ( A  e.  ZZ  /\  ( abs `  A )  =  1 )  -> 
1  e.  Prime )
)
8373, 82syl5bi 217 . . . . 5  |-  ( A  e.  Prime  ->  ( A  e.  (Unit ` ring )  ->  1  e. 
Prime ) )
8472, 83mtoi 178 . . . 4  |-  ( A  e.  Prime  ->  -.  A  e.  (Unit ` ring ) )
85 simplrl 759 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  x  e.  ZZ )
8685zcnd 10748 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  x  e.  CC )
8774ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  A  e.  NN )
8887nnne0d 10366 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  A  =/=  0 )
89 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
x  x.  y )  =  A )
90 simplrr 760 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  y  e.  ZZ )
9190zcnd 10748 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  y  e.  CC )
9291mul02d 9567 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
0  x.  y )  =  0 )
9388, 89, 923netr4d 2635 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
x  x.  y )  =/=  ( 0  x.  y ) )
94 oveq1 6098 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
x  x.  y )  =  ( 0  x.  y ) )
9594necon3i 2650 . . . . . . . . . . . 12  |-  ( ( x  x.  y )  =/=  ( 0  x.  y )  ->  x  =/=  0 )
9693, 95syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  x  =/=  0 )
9786, 96absne0d 12933 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  =/=  0 )
9897neneqd 2624 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  -.  ( abs `  x )  =  0 )
99 nn0abscl 12801 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  ( abs `  x )  e. 
NN0 )
10085, 99syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  e. 
NN0 )
101 elnn0 10581 . . . . . . . . . . 11  |-  ( ( abs `  x )  e.  NN0  <->  ( ( abs `  x )  e.  NN  \/  ( abs `  x
)  =  0 ) )
102100, 101sylib 196 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( abs `  x
)  e.  NN  \/  ( abs `  x )  =  0 ) )
103102ord 377 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( -.  ( abs `  x
)  e.  NN  ->  ( abs `  x )  =  0 ) )
10498, 103mt3d 125 . . . . . . . 8  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  e.  NN )
10569simprbi 464 . . . . . . . . 9  |-  ( A  e.  Prime  ->  A. y  e.  NN  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) ) )
106105ad2antrr 725 . . . . . . . 8  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  A. y  e.  NN  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) ) )
107 dvdsmul1 13554 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  x  ||  ( x  x.  y ) )
108107ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  x  ||  ( x  x.  y
) )
109108, 89breqtrd 4316 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  x  ||  A )
11071ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  A  e.  ZZ )
111 absdvdsb 13551 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  A  e.  ZZ )  ->  ( x  ||  A  <->  ( abs `  x ) 
||  A ) )
11285, 110, 111syl2anc 661 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
x  ||  A  <->  ( abs `  x )  ||  A
) )
113109, 112mpbid 210 . . . . . . . 8  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  ||  A )
114 breq1 4295 . . . . . . . . . 10  |-  ( y  =  ( abs `  x
)  ->  ( y  ||  A  <->  ( abs `  x
)  ||  A )
)
115 eqeq1 2449 . . . . . . . . . . 11  |-  ( y  =  ( abs `  x
)  ->  ( y  =  1  <->  ( abs `  x )  =  1 ) )
116 eqeq1 2449 . . . . . . . . . . 11  |-  ( y  =  ( abs `  x
)  ->  ( y  =  A  <->  ( abs `  x
)  =  A ) )
117115, 116orbi12d 709 . . . . . . . . . 10  |-  ( y  =  ( abs `  x
)  ->  ( (
y  =  1  \/  y  =  A )  <-> 
( ( abs `  x
)  =  1  \/  ( abs `  x
)  =  A ) ) )
118114, 117imbi12d 320 . . . . . . . . 9  |-  ( y  =  ( abs `  x
)  ->  ( (
y  ||  A  ->  ( y  =  1  \/  y  =  A ) )  <->  ( ( abs `  x )  ||  A  ->  ( ( abs `  x
)  =  1  \/  ( abs `  x
)  =  A ) ) ) )
119118rspcv 3069 . . . . . . . 8  |-  ( ( abs `  x )  e.  NN  ->  ( A. y  e.  NN  ( y  ||  A  ->  ( y  =  1  \/  y  =  A ) )  ->  (
( abs `  x
)  ||  A  ->  ( ( abs `  x
)  =  1  \/  ( abs `  x
)  =  A ) ) ) )
120104, 106, 113, 119syl3c 61 . . . . . . 7  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( abs `  x
)  =  1  \/  ( abs `  x
)  =  A ) )
121 zringunit 17914 . . . . . . . . . 10  |-  ( x  e.  (Unit ` ring )  <->  ( x  e.  ZZ  /\  ( abs `  x )  =  1 ) )
122121baib 896 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  (
x  e.  (Unit ` ring )  <->  ( abs `  x )  =  1 ) )
12385, 122syl 16 . . . . . . . 8  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
x  e.  (Unit ` ring )  <->  ( abs `  x )  =  1 ) )
12490, 31syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
y  e.  (Unit ` ring )  <->  ( abs `  y )  =  1 ) )
12591abscld 12922 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  y )  e.  RR )
126125recnd 9412 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  y )  e.  CC )
127 1cnd 9402 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  1  e.  CC )
12886abscld 12922 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  e.  RR )
129128recnd 9412 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  x )  e.  CC )
130126, 127, 129, 97mulcand 9969 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( ( abs `  x
)  x.  ( abs `  y ) )  =  ( ( abs `  x
)  x.  1 )  <-> 
( abs `  y
)  =  1 ) )
13189fveq2d 5695 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  ( x  x.  y ) )  =  ( abs `  A
) )
13286, 91absmuld 12940 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  ( x  x.  y ) )  =  ( ( abs `  x
)  x.  ( abs `  y ) ) )
13377ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  ( abs `  A )  =  A )
134131, 132, 1333eqtr3d 2483 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( abs `  x
)  x.  ( abs `  y ) )  =  A )
135129mulid1d 9403 . . . . . . . . . . 11  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( abs `  x
)  x.  1 )  =  ( abs `  x
) )
136134, 135eqeq12d 2457 . . . . . . . . . 10  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( ( abs `  x
)  x.  ( abs `  y ) )  =  ( ( abs `  x
)  x.  1 )  <-> 
A  =  ( abs `  x ) ) )
137 eqcom 2445 . . . . . . . . . 10  |-  ( A  =  ( abs `  x
)  <->  ( abs `  x
)  =  A )
138136, 137syl6bb 261 . . . . . . . . 9  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( ( abs `  x
)  x.  ( abs `  y ) )  =  ( ( abs `  x
)  x.  1 )  <-> 
( abs `  x
)  =  A ) )
139124, 130, 1383bitr2d 281 . . . . . . . 8  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
y  e.  (Unit ` ring )  <->  ( abs `  x )  =  A ) )
140123, 139orbi12d 709 . . . . . . 7  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
( x  e.  (Unit ` ring )  \/  y  e.  (Unit ` ring ) )  <->  ( ( abs `  x )  =  1  \/  ( abs `  x )  =  A ) ) )
141120, 140mpbird 232 . . . . . 6  |-  ( ( ( A  e.  Prime  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( x  x.  y )  =  A )  ->  (
x  e.  (Unit ` ring )  \/  y  e.  (Unit ` ring ) ) )
142141ex 434 . . . . 5  |-  ( ( A  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  x.  y )  =  A  ->  (
x  e.  (Unit ` ring )  \/  y  e.  (Unit ` ring ) ) ) )
143142ralrimivva 2808 . . . 4  |-  ( A  e.  Prime  ->  A. x  e.  ZZ  A. y  e.  ZZ  ( ( x  x.  y )  =  A  ->  ( x  e.  (Unit ` ring )  \/  y  e.  (Unit ` ring ) ) ) )
14425, 26, 2, 27isirred2 16793 . . . 4  |-  ( A  e.  I  <->  ( A  e.  ZZ  /\  -.  A  e.  (Unit ` ring )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( ( x  x.  y )  =  A  ->  ( x  e.  (Unit ` ring )  \/  y  e.  (Unit ` ring ) ) ) ) )
14571, 84, 143, 144syl3anbrc 1172 . . 3  |-  ( A  e.  Prime  ->  A  e.  I )
146145adantl 466 . 2  |-  ( ( A  e.  NN  /\  A  e.  Prime )  ->  A  e.  I )
14770, 146impbida 828 1  |-  ( A  e.  NN  ->  ( A  e.  I  <->  A  e.  Prime ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2606   A.wral 2715   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   CCcc 9280   RRcr 9281   0cc0 9282   1c1 9283    x. cmul 9287    < clt 9418    <_ cle 9419    / cdiv 9993   NNcn 10322   2c2 10371   NN0cn0 10579   ZZcz 10646   ZZ>=cuz 10861   abscabs 12723    || cdivides 13535   Primecprime 13763   Ringcrg 16645  Unitcui 16731  Irredcir 16732  ℤringzring 17883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360  ax-addf 9361  ax-mulf 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-tpos 6745  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-sup 7691  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-rp 10992  df-fz 11438  df-seq 11807  df-exp 11866  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-dvds 13536  df-prm 13764  df-gz 13991  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-starv 14253  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-0g 14380  df-mnd 15415  df-grp 15545  df-minusg 15546  df-subg 15678  df-cmn 16279  df-mgp 16592  df-ur 16604  df-rng 16647  df-cring 16648  df-oppr 16715  df-dvdsr 16733  df-unit 16734  df-irred 16735  df-invr 16764  df-dvr 16775  df-drng 16834  df-subrg 16863  df-cnfld 17819  df-zring 17884
This theorem is referenced by:  dfprm2  17918  prmirred  17919
  Copyright terms: Public domain W3C validator