MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmfac1 Structured version   Unicode version

Theorem prmfac1 14135
Description: The factorial of a number only contains primes less than the base. (Contributed by Mario Carneiro, 6-Mar-2014.)
Assertion
Ref Expression
prmfac1  |-  ( ( N  e.  NN0  /\  P  e.  Prime  /\  P  ||  ( ! `  N
) )  ->  P  <_  N )

Proof of Theorem prmfac1
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5872 . . . . . 6  |-  ( x  =  0  ->  ( ! `  x )  =  ( ! ` 
0 ) )
21breq2d 4465 . . . . 5  |-  ( x  =  0  ->  ( P  ||  ( ! `  x )  <->  P  ||  ( ! `  0 )
) )
3 breq2 4457 . . . . 5  |-  ( x  =  0  ->  ( P  <_  x  <->  P  <_  0 ) )
42, 3imbi12d 320 . . . 4  |-  ( x  =  0  ->  (
( P  ||  ( ! `  x )  ->  P  <_  x )  <->  ( P  ||  ( ! `
 0 )  ->  P  <_  0 ) ) )
54imbi2d 316 . . 3  |-  ( x  =  0  ->  (
( P  e.  Prime  -> 
( P  ||  ( ! `  x )  ->  P  <_  x )
)  <->  ( P  e. 
Prime  ->  ( P  ||  ( ! `  0 )  ->  P  <_  0
) ) ) )
6 fveq2 5872 . . . . . 6  |-  ( x  =  k  ->  ( ! `  x )  =  ( ! `  k ) )
76breq2d 4465 . . . . 5  |-  ( x  =  k  ->  ( P  ||  ( ! `  x )  <->  P  ||  ( ! `  k )
) )
8 breq2 4457 . . . . 5  |-  ( x  =  k  ->  ( P  <_  x  <->  P  <_  k ) )
97, 8imbi12d 320 . . . 4  |-  ( x  =  k  ->  (
( P  ||  ( ! `  x )  ->  P  <_  x )  <->  ( P  ||  ( ! `
 k )  ->  P  <_  k ) ) )
109imbi2d 316 . . 3  |-  ( x  =  k  ->  (
( P  e.  Prime  -> 
( P  ||  ( ! `  x )  ->  P  <_  x )
)  <->  ( P  e. 
Prime  ->  ( P  ||  ( ! `  k )  ->  P  <_  k
) ) ) )
11 fveq2 5872 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( ! `  x )  =  ( ! `  ( k  +  1 ) ) )
1211breq2d 4465 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  ( P  ||  ( ! `  x )  <->  P  ||  ( ! `  ( k  +  1 ) ) ) )
13 breq2 4457 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  ( P  <_  x  <->  P  <_  ( k  +  1 ) ) )
1412, 13imbi12d 320 . . . 4  |-  ( x  =  ( k  +  1 )  ->  (
( P  ||  ( ! `  x )  ->  P  <_  x )  <->  ( P  ||  ( ! `
 ( k  +  1 ) )  ->  P  <_  ( k  +  1 ) ) ) )
1514imbi2d 316 . . 3  |-  ( x  =  ( k  +  1 )  ->  (
( P  e.  Prime  -> 
( P  ||  ( ! `  x )  ->  P  <_  x )
)  <->  ( P  e. 
Prime  ->  ( P  ||  ( ! `  ( k  +  1 ) )  ->  P  <_  (
k  +  1 ) ) ) ) )
16 fveq2 5872 . . . . . 6  |-  ( x  =  N  ->  ( ! `  x )  =  ( ! `  N ) )
1716breq2d 4465 . . . . 5  |-  ( x  =  N  ->  ( P  ||  ( ! `  x )  <->  P  ||  ( ! `  N )
) )
18 breq2 4457 . . . . 5  |-  ( x  =  N  ->  ( P  <_  x  <->  P  <_  N ) )
1917, 18imbi12d 320 . . . 4  |-  ( x  =  N  ->  (
( P  ||  ( ! `  x )  ->  P  <_  x )  <->  ( P  ||  ( ! `
 N )  ->  P  <_  N ) ) )
2019imbi2d 316 . . 3  |-  ( x  =  N  ->  (
( P  e.  Prime  -> 
( P  ||  ( ! `  x )  ->  P  <_  x )
)  <->  ( P  e. 
Prime  ->  ( P  ||  ( ! `  N )  ->  P  <_  N
) ) ) )
21 fac0 12336 . . . . 5  |-  ( ! `
 0 )  =  1
2221breq2i 4461 . . . 4  |-  ( P 
||  ( ! ` 
0 )  <->  P  ||  1
)
23 nprmdvds1 14128 . . . . 5  |-  ( P  e.  Prime  ->  -.  P  ||  1 )
2423pm2.21d 106 . . . 4  |-  ( P  e.  Prime  ->  ( P 
||  1  ->  P  <_  0 ) )
2522, 24syl5bi 217 . . 3  |-  ( P  e.  Prime  ->  ( P 
||  ( ! ` 
0 )  ->  P  <_  0 ) )
26 facp1 12338 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
2726adantr 465 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ! `  (
k  +  1 ) )  =  ( ( ! `  k )  x.  ( k  +  1 ) ) )
2827breq2d 4465 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  ( ! `  ( k  +  1 ) )  <-> 
P  ||  ( ( ! `  k )  x.  ( k  +  1 ) ) ) )
29 simpr 461 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  ->  P  e.  Prime )
30 faccl 12343 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
3130adantr 465 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ! `  k
)  e.  NN )
3231nnzd 10977 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ! `  k
)  e.  ZZ )
33 nn0p1nn 10847 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
3433adantr 465 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( k  +  1 )  e.  NN )
3534nnzd 10977 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( k  +  1 )  e.  ZZ )
36 euclemma 14125 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( ! `  k )  e.  ZZ  /\  ( k  +  1 )  e.  ZZ )  ->  ( P  ||  ( ( ! `
 k )  x.  ( k  +  1 ) )  <->  ( P  ||  ( ! `  k
)  \/  P  ||  ( k  +  1 ) ) ) )
3729, 32, 35, 36syl3anc 1228 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  (
( ! `  k
)  x.  ( k  +  1 ) )  <-> 
( P  ||  ( ! `  k )  \/  P  ||  ( k  +  1 ) ) ) )
3828, 37bitrd 253 . . . . . . 7  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  ( ! `  ( k  +  1 ) )  <-> 
( P  ||  ( ! `  k )  \/  P  ||  ( k  +  1 ) ) ) )
39 nn0re 10816 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  RR )
4039adantr 465 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
k  e.  RR )
4140lep1d 10489 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
k  <_  ( k  +  1 ) )
42 prmz 14097 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  ZZ )
4342adantl 466 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  ->  P  e.  ZZ )
4443zred 10978 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  ->  P  e.  RR )
4534nnred 10563 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( k  +  1 )  e.  RR )
46 letr 9690 . . . . . . . . . . . 12  |-  ( ( P  e.  RR  /\  k  e.  RR  /\  (
k  +  1 )  e.  RR )  -> 
( ( P  <_ 
k  /\  k  <_  ( k  +  1 ) )  ->  P  <_  ( k  +  1 ) ) )
4744, 40, 45, 46syl3anc 1228 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ( P  <_ 
k  /\  k  <_  ( k  +  1 ) )  ->  P  <_  ( k  +  1 ) ) )
4841, 47mpan2d 674 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  <_  k  ->  P  <_  ( k  +  1 ) ) )
4948imim2d 52 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ( P  ||  ( ! `  k )  ->  P  <_  k
)  ->  ( P  ||  ( ! `  k
)  ->  P  <_  ( k  +  1 ) ) ) )
5049com23 78 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  ( ! `  k )  ->  ( ( P  ||  ( ! `  k )  ->  P  <_  k
)  ->  P  <_  ( k  +  1 ) ) ) )
51 dvdsle 13907 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  ( k  +  1 )  e.  NN )  ->  ( P  ||  ( k  +  1 )  ->  P  <_  ( k  +  1 ) ) )
5243, 34, 51syl2anc 661 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  (
k  +  1 )  ->  P  <_  (
k  +  1 ) ) )
5352a1dd 46 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  (
k  +  1 )  ->  ( ( P 
||  ( ! `  k )  ->  P  <_  k )  ->  P  <_  ( k  +  1 ) ) ) )
5450, 53jaod 380 . . . . . . 7  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ( P  ||  ( ! `  k )  \/  P  ||  (
k  +  1 ) )  ->  ( ( P  ||  ( ! `  k )  ->  P  <_  k )  ->  P  <_  ( k  +  1 ) ) ) )
5538, 54sylbid 215 . . . . . 6  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  ( ! `  ( k  +  1 ) )  ->  ( ( P 
||  ( ! `  k )  ->  P  <_  k )  ->  P  <_  ( k  +  1 ) ) ) )
5655com23 78 . . . . 5  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ( P  ||  ( ! `  k )  ->  P  <_  k
)  ->  ( P  ||  ( ! `  (
k  +  1 ) )  ->  P  <_  ( k  +  1 ) ) ) )
5756ex 434 . . . 4  |-  ( k  e.  NN0  ->  ( P  e.  Prime  ->  ( ( P  ||  ( ! `
 k )  ->  P  <_  k )  -> 
( P  ||  ( ! `  ( k  +  1 ) )  ->  P  <_  (
k  +  1 ) ) ) ) )
5857a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( P  e.  Prime  ->  ( P  ||  ( ! `
 k )  ->  P  <_  k ) )  ->  ( P  e. 
Prime  ->  ( P  ||  ( ! `  ( k  +  1 ) )  ->  P  <_  (
k  +  1 ) ) ) ) )
595, 10, 15, 20, 25, 58nn0ind 10969 . 2  |-  ( N  e.  NN0  ->  ( P  e.  Prime  ->  ( P 
||  ( ! `  N )  ->  P  <_  N ) ) )
60593imp 1190 1  |-  ( ( N  e.  NN0  /\  P  e.  Prime  /\  P  ||  ( ! `  N
) )  ->  P  <_  N )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   RRcr 9503   0cc0 9504   1c1 9505    + caddc 9507    x. cmul 9509    <_ cle 9641   NNcn 10548   NN0cn0 10807   ZZcz 10876   !cfa 12333    || cdivides 13864   Primecprime 14093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-fl 11909  df-mod 11977  df-seq 12088  df-exp 12147  df-fac 12334  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-dvds 13865  df-gcd 14021  df-prm 14094
This theorem is referenced by:  chtublem  23352  bposlem3  23427
  Copyright terms: Public domain W3C validator