MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdiveq Structured version   Unicode version

Theorem prmdiveq 14171
Description: The modular inverse of  A  mod  P is unique. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
prmdiv.1  |-  R  =  ( ( A ^
( P  -  2 ) )  mod  P
)
Assertion
Ref Expression
prmdiveq  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  S
)  -  1 ) )  <->  S  =  R
) )

Proof of Theorem prmdiveq
StepHypRef Expression
1 simprr 756 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( ( A  x.  S )  - 
1 ) )
2 prmdiv.1 . . . . . . . . . . 11  |-  R  =  ( ( A ^
( P  -  2 ) )  mod  P
)
32prmdiv 14170 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  e.  ( 1 ... ( P  - 
1 ) )  /\  P  ||  ( ( A  x.  R )  - 
1 ) ) )
43adantr 465 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( R  e.  ( 1 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  R
)  -  1 ) ) )
54simprd 463 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( ( A  x.  R )  - 
1 ) )
6 simpl1 999 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  e.  Prime )
7 prmz 14076 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  ZZ )
86, 7syl 16 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  e.  ZZ )
9 simpl2 1000 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  A  e.  ZZ )
10 elfzelz 11684 . . . . . . . . . . . 12  |-  ( S  e.  ( 0 ... ( P  -  1 ) )  ->  S  e.  ZZ )
1110ad2antrl 727 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  e.  ZZ )
129, 11zmulcld 10968 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  S
)  e.  ZZ )
13 1z 10890 . . . . . . . . . 10  |-  1  e.  ZZ
14 zsubcl 10901 . . . . . . . . . 10  |-  ( ( ( A  x.  S
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( A  x.  S )  -  1 )  e.  ZZ )
1512, 13, 14sylancl 662 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( A  x.  S )  -  1 )  e.  ZZ )
164simpld 459 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  R  e.  ( 1 ... ( P  - 
1 ) ) )
17 elfzelz 11684 . . . . . . . . . . . 12  |-  ( R  e.  ( 1 ... ( P  -  1 ) )  ->  R  e.  ZZ )
1816, 17syl 16 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  R  e.  ZZ )
199, 18zmulcld 10968 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  R
)  e.  ZZ )
20 zsubcl 10901 . . . . . . . . . 10  |-  ( ( ( A  x.  R
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( A  x.  R )  -  1 )  e.  ZZ )
2119, 13, 20sylancl 662 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( A  x.  R )  -  1 )  e.  ZZ )
22 dvds2sub 13873 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  ( ( A  x.  S )  -  1 )  e.  ZZ  /\  ( ( A  x.  R )  -  1 )  e.  ZZ )  ->  ( ( P 
||  ( ( A  x.  S )  - 
1 )  /\  P  ||  ( ( A  x.  R )  -  1 ) )  ->  P  ||  ( ( ( A  x.  S )  - 
1 )  -  (
( A  x.  R
)  -  1 ) ) ) )
238, 15, 21, 22syl3anc 1228 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( P  ||  ( ( A  x.  S )  -  1 )  /\  P  ||  ( ( A  x.  R )  -  1 ) )  ->  P  ||  ( ( ( A  x.  S )  - 
1 )  -  (
( A  x.  R
)  -  1 ) ) ) )
241, 5, 23mp2and 679 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( ( ( A  x.  S )  -  1 )  -  ( ( A  x.  R )  -  1 ) ) )
2512zcnd 10963 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  S
)  e.  CC )
2619zcnd 10963 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  R
)  e.  CC )
27 ax-1cn 9546 . . . . . . . . . 10  |-  1  e.  CC
2827a1i 11 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
1  e.  CC )
2925, 26, 28nnncan2d 9961 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( ( A  x.  S )  - 
1 )  -  (
( A  x.  R
)  -  1 ) )  =  ( ( A  x.  S )  -  ( A  x.  R ) ) )
309zcnd 10963 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  A  e.  CC )
31 elfznn0 11766 . . . . . . . . . . . 12  |-  ( S  e.  ( 0 ... ( P  -  1 ) )  ->  S  e.  NN0 )
3231ad2antrl 727 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  e.  NN0 )
3332nn0red 10849 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  e.  RR )
3433recnd 9618 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  e.  CC )
3518zcnd 10963 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  R  e.  CC )
3630, 34, 35subdid 10008 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  ( S  -  R )
)  =  ( ( A  x.  S )  -  ( A  x.  R ) ) )
3729, 36eqtr4d 2511 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( ( A  x.  S )  - 
1 )  -  (
( A  x.  R
)  -  1 ) )  =  ( A  x.  ( S  -  R ) ) )
3824, 37breqtrd 4471 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( A  x.  ( S  -  R
) ) )
39 simpl3 1001 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  -.  P  ||  A )
40 coprm 14096 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
416, 9, 40syl2anc 661 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( -.  P  ||  A 
<->  ( P  gcd  A
)  =  1 ) )
4239, 41mpbid 210 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( P  gcd  A
)  =  1 )
4311, 18zsubcld 10967 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( S  -  R
)  e.  ZZ )
44 coprmdvds 14098 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  A  e.  ZZ  /\  ( S  -  R )  e.  ZZ )  ->  (
( P  ||  ( A  x.  ( S  -  R ) )  /\  ( P  gcd  A )  =  1 )  ->  P  ||  ( S  -  R ) ) )
458, 9, 43, 44syl3anc 1228 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( P  ||  ( A  x.  ( S  -  R )
)  /\  ( P  gcd  A )  =  1 )  ->  P  ||  ( S  -  R )
) )
4638, 42, 45mp2and 679 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( S  -  R ) )
47 prmnn 14075 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
486, 47syl 16 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  e.  NN )
49 moddvds 13850 . . . . . 6  |-  ( ( P  e.  NN  /\  S  e.  ZZ  /\  R  e.  ZZ )  ->  (
( S  mod  P
)  =  ( R  mod  P )  <->  P  ||  ( S  -  R )
) )
5048, 11, 18, 49syl3anc 1228 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( S  mod  P )  =  ( R  mod  P )  <->  P  ||  ( S  -  R )
) )
5146, 50mpbird 232 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( S  mod  P
)  =  ( R  mod  P ) )
5248nnrpd 11251 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  e.  RR+ )
53 elfzle1 11685 . . . . . 6  |-  ( S  e.  ( 0 ... ( P  -  1 ) )  ->  0  <_  S )
5453ad2antrl 727 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
0  <_  S )
55 elfzle2 11686 . . . . . . 7  |-  ( S  e.  ( 0 ... ( P  -  1 ) )  ->  S  <_  ( P  -  1 ) )
5655ad2antrl 727 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  <_  ( P  - 
1 ) )
57 zltlem1 10911 . . . . . . 7  |-  ( ( S  e.  ZZ  /\  P  e.  ZZ )  ->  ( S  <  P  <->  S  <_  ( P  - 
1 ) ) )
5811, 8, 57syl2anc 661 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( S  <  P  <->  S  <_  ( P  - 
1 ) ) )
5956, 58mpbird 232 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  <  P )
60 modid 11984 . . . . 5  |-  ( ( ( S  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  S  /\  S  <  P ) )  ->  ( S  mod  P )  =  S )
6133, 52, 54, 59, 60syl22anc 1229 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( S  mod  P
)  =  S )
62 prmuz2 14090 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
63 uznn0sub 11109 . . . . . . . . 9  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  -  2 )  e. 
NN0 )
646, 62, 633syl 20 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( P  -  2 )  e.  NN0 )
65 zexpcl 12145 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( P  -  2
)  e.  NN0 )  ->  ( A ^ ( P  -  2 ) )  e.  ZZ )
669, 64, 65syl2anc 661 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A ^ ( P  -  2 ) )  e.  ZZ )
6766zred 10962 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A ^ ( P  -  2 ) )  e.  RR )
68 modabs2 11994 . . . . . 6  |-  ( ( ( A ^ ( P  -  2 ) )  e.  RR  /\  P  e.  RR+ )  -> 
( ( ( A ^ ( P  - 
2 ) )  mod 
P )  mod  P
)  =  ( ( A ^ ( P  -  2 ) )  mod  P ) )
6967, 52, 68syl2anc 661 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( ( A ^ ( P  - 
2 ) )  mod 
P )  mod  P
)  =  ( ( A ^ ( P  -  2 ) )  mod  P ) )
702oveq1i 6292 . . . . 5  |-  ( R  mod  P )  =  ( ( ( A ^ ( P  - 
2 ) )  mod 
P )  mod  P
)
7169, 70, 23eqtr4g 2533 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( R  mod  P
)  =  R )
7251, 61, 713eqtr3d 2516 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  =  R )
7372ex 434 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  S
)  -  1 ) )  ->  S  =  R ) )
74 1e0p1 11000 . . . . . . . 8  |-  1  =  ( 0  +  1 )
7574oveq1i 6292 . . . . . . 7  |-  ( 1 ... ( P  - 
1 ) )  =  ( ( 0  +  1 ) ... ( P  -  1 ) )
76 0z 10871 . . . . . . . 8  |-  0  e.  ZZ
77 fzp1ss 11727 . . . . . . . 8  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... ( P  -  1 ) ) 
C_  ( 0 ... ( P  -  1 ) ) )
7876, 77ax-mp 5 . . . . . . 7  |-  ( ( 0  +  1 ) ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) )
7975, 78eqsstri 3534 . . . . . 6  |-  ( 1 ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) )
8079sseli 3500 . . . . 5  |-  ( R  e.  ( 1 ... ( P  -  1 ) )  ->  R  e.  ( 0 ... ( P  -  1 ) ) )
81 eleq1 2539 . . . . 5  |-  ( S  =  R  ->  ( S  e.  ( 0 ... ( P  - 
1 ) )  <->  R  e.  ( 0 ... ( P  -  1 ) ) ) )
8280, 81syl5ibr 221 . . . 4  |-  ( S  =  R  ->  ( R  e.  ( 1 ... ( P  - 
1 ) )  ->  S  e.  ( 0 ... ( P  - 
1 ) ) ) )
83 oveq2 6290 . . . . . . 7  |-  ( S  =  R  ->  ( A  x.  S )  =  ( A  x.  R ) )
8483oveq1d 6297 . . . . . 6  |-  ( S  =  R  ->  (
( A  x.  S
)  -  1 )  =  ( ( A  x.  R )  - 
1 ) )
8584breq2d 4459 . . . . 5  |-  ( S  =  R  ->  ( P  ||  ( ( A  x.  S )  - 
1 )  <->  P  ||  (
( A  x.  R
)  -  1 ) ) )
8685biimprd 223 . . . 4  |-  ( S  =  R  ->  ( P  ||  ( ( A  x.  R )  - 
1 )  ->  P  ||  ( ( A  x.  S )  -  1 ) ) )
8782, 86anim12d 563 . . 3  |-  ( S  =  R  ->  (
( R  e.  ( 1 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  R
)  -  1 ) )  ->  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) ) )
883, 87syl5com 30 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( S  =  R  ->  ( S  e.  ( 0 ... ( P  - 
1 ) )  /\  P  ||  ( ( A  x.  S )  - 
1 ) ) ) )
8973, 88impbid 191 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  S
)  -  1 ) )  <->  S  =  R
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    C_ wss 3476   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493    < clt 9624    <_ cle 9625    - cmin 9801   NNcn 10532   2c2 10581   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11078   RR+crp 11216   ...cfz 11668    mod cmo 11960   ^cexp 12130    || cdivides 13843    gcd cgcd 13999   Primecprime 14072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11961  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-dvds 13844  df-gcd 14000  df-prm 14073  df-phi 14151
This theorem is referenced by:  prmdivdiv  14172  modprminveq  14182  wilthlem1  23070  wilthlem2  23071
  Copyright terms: Public domain W3C validator