MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdiveq Structured version   Unicode version

Theorem prmdiveq 13857
Description: The modular inverse of  A  mod  P is unique. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
prmdiv.1  |-  R  =  ( ( A ^
( P  -  2 ) )  mod  P
)
Assertion
Ref Expression
prmdiveq  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  S
)  -  1 ) )  <->  S  =  R
) )

Proof of Theorem prmdiveq
StepHypRef Expression
1 simprr 751 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( ( A  x.  S )  - 
1 ) )
2 prmdiv.1 . . . . . . . . . . 11  |-  R  =  ( ( A ^
( P  -  2 ) )  mod  P
)
32prmdiv 13856 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  e.  ( 1 ... ( P  - 
1 ) )  /\  P  ||  ( ( A  x.  R )  - 
1 ) ) )
43adantr 462 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( R  e.  ( 1 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  R
)  -  1 ) ) )
54simprd 460 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( ( A  x.  R )  - 
1 ) )
6 simpl1 986 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  e.  Prime )
7 prmz 13763 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  ZZ )
86, 7syl 16 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  e.  ZZ )
9 simpl2 987 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  A  e.  ZZ )
10 elfzelz 11449 . . . . . . . . . . . 12  |-  ( S  e.  ( 0 ... ( P  -  1 ) )  ->  S  e.  ZZ )
1110ad2antrl 722 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  e.  ZZ )
129, 11zmulcld 10749 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  S
)  e.  ZZ )
13 1z 10672 . . . . . . . . . 10  |-  1  e.  ZZ
14 zsubcl 10683 . . . . . . . . . 10  |-  ( ( ( A  x.  S
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( A  x.  S )  -  1 )  e.  ZZ )
1512, 13, 14sylancl 657 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( A  x.  S )  -  1 )  e.  ZZ )
164simpld 456 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  R  e.  ( 1 ... ( P  - 
1 ) ) )
17 elfzelz 11449 . . . . . . . . . . . 12  |-  ( R  e.  ( 1 ... ( P  -  1 ) )  ->  R  e.  ZZ )
1816, 17syl 16 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  R  e.  ZZ )
199, 18zmulcld 10749 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  R
)  e.  ZZ )
20 zsubcl 10683 . . . . . . . . . 10  |-  ( ( ( A  x.  R
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( A  x.  R )  -  1 )  e.  ZZ )
2119, 13, 20sylancl 657 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( A  x.  R )  -  1 )  e.  ZZ )
22 dvds2sub 13561 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  ( ( A  x.  S )  -  1 )  e.  ZZ  /\  ( ( A  x.  R )  -  1 )  e.  ZZ )  ->  ( ( P 
||  ( ( A  x.  S )  - 
1 )  /\  P  ||  ( ( A  x.  R )  -  1 ) )  ->  P  ||  ( ( ( A  x.  S )  - 
1 )  -  (
( A  x.  R
)  -  1 ) ) ) )
238, 15, 21, 22syl3anc 1213 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( P  ||  ( ( A  x.  S )  -  1 )  /\  P  ||  ( ( A  x.  R )  -  1 ) )  ->  P  ||  ( ( ( A  x.  S )  - 
1 )  -  (
( A  x.  R
)  -  1 ) ) ) )
241, 5, 23mp2and 674 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( ( ( A  x.  S )  -  1 )  -  ( ( A  x.  R )  -  1 ) ) )
2512zcnd 10744 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  S
)  e.  CC )
2619zcnd 10744 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  R
)  e.  CC )
27 ax-1cn 9336 . . . . . . . . . 10  |-  1  e.  CC
2827a1i 11 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
1  e.  CC )
2925, 26, 28nnncan2d 9750 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( ( A  x.  S )  - 
1 )  -  (
( A  x.  R
)  -  1 ) )  =  ( ( A  x.  S )  -  ( A  x.  R ) ) )
309zcnd 10744 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  A  e.  CC )
31 elfznn0 11477 . . . . . . . . . . . 12  |-  ( S  e.  ( 0 ... ( P  -  1 ) )  ->  S  e.  NN0 )
3231ad2antrl 722 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  e.  NN0 )
3332nn0red 10633 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  e.  RR )
3433recnd 9408 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  e.  CC )
3518zcnd 10744 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  R  e.  CC )
3630, 34, 35subdid 9796 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  ( S  -  R )
)  =  ( ( A  x.  S )  -  ( A  x.  R ) ) )
3729, 36eqtr4d 2476 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( ( A  x.  S )  - 
1 )  -  (
( A  x.  R
)  -  1 ) )  =  ( A  x.  ( S  -  R ) ) )
3824, 37breqtrd 4313 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( A  x.  ( S  -  R
) ) )
39 simpl3 988 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  -.  P  ||  A )
40 coprm 13782 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
416, 9, 40syl2anc 656 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( -.  P  ||  A 
<->  ( P  gcd  A
)  =  1 ) )
4239, 41mpbid 210 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( P  gcd  A
)  =  1 )
4311, 18zsubcld 10748 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( S  -  R
)  e.  ZZ )
44 coprmdvds 13784 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  A  e.  ZZ  /\  ( S  -  R )  e.  ZZ )  ->  (
( P  ||  ( A  x.  ( S  -  R ) )  /\  ( P  gcd  A )  =  1 )  ->  P  ||  ( S  -  R ) ) )
458, 9, 43, 44syl3anc 1213 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( P  ||  ( A  x.  ( S  -  R )
)  /\  ( P  gcd  A )  =  1 )  ->  P  ||  ( S  -  R )
) )
4638, 42, 45mp2and 674 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( S  -  R ) )
47 prmnn 13762 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
486, 47syl 16 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  e.  NN )
49 moddvds 13538 . . . . . 6  |-  ( ( P  e.  NN  /\  S  e.  ZZ  /\  R  e.  ZZ )  ->  (
( S  mod  P
)  =  ( R  mod  P )  <->  P  ||  ( S  -  R )
) )
5048, 11, 18, 49syl3anc 1213 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( S  mod  P )  =  ( R  mod  P )  <->  P  ||  ( S  -  R )
) )
5146, 50mpbird 232 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( S  mod  P
)  =  ( R  mod  P ) )
5248nnrpd 11022 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  e.  RR+ )
53 elfzle1 11450 . . . . . 6  |-  ( S  e.  ( 0 ... ( P  -  1 ) )  ->  0  <_  S )
5453ad2antrl 722 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
0  <_  S )
55 elfzle2 11451 . . . . . . 7  |-  ( S  e.  ( 0 ... ( P  -  1 ) )  ->  S  <_  ( P  -  1 ) )
5655ad2antrl 722 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  <_  ( P  - 
1 ) )
57 zltlem1 10693 . . . . . . 7  |-  ( ( S  e.  ZZ  /\  P  e.  ZZ )  ->  ( S  <  P  <->  S  <_  ( P  - 
1 ) ) )
5811, 8, 57syl2anc 656 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( S  <  P  <->  S  <_  ( P  - 
1 ) ) )
5956, 58mpbird 232 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  <  P )
60 modid 11728 . . . . 5  |-  ( ( ( S  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  S  /\  S  <  P ) )  ->  ( S  mod  P )  =  S )
6133, 52, 54, 59, 60syl22anc 1214 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( S  mod  P
)  =  S )
62 prmuz2 13777 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
63 uznn0sub 10888 . . . . . . . . 9  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  -  2 )  e. 
NN0 )
646, 62, 633syl 20 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( P  -  2 )  e.  NN0 )
65 zexpcl 11876 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( P  -  2
)  e.  NN0 )  ->  ( A ^ ( P  -  2 ) )  e.  ZZ )
669, 64, 65syl2anc 656 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A ^ ( P  -  2 ) )  e.  ZZ )
6766zred 10743 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A ^ ( P  -  2 ) )  e.  RR )
68 modabs2 11738 . . . . . 6  |-  ( ( ( A ^ ( P  -  2 ) )  e.  RR  /\  P  e.  RR+ )  -> 
( ( ( A ^ ( P  - 
2 ) )  mod 
P )  mod  P
)  =  ( ( A ^ ( P  -  2 ) )  mod  P ) )
6967, 52, 68syl2anc 656 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( ( A ^ ( P  - 
2 ) )  mod 
P )  mod  P
)  =  ( ( A ^ ( P  -  2 ) )  mod  P ) )
702oveq1i 6100 . . . . 5  |-  ( R  mod  P )  =  ( ( ( A ^ ( P  - 
2 ) )  mod 
P )  mod  P
)
7169, 70, 23eqtr4g 2498 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( R  mod  P
)  =  R )
7251, 61, 713eqtr3d 2481 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  =  R )
7372ex 434 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  S
)  -  1 ) )  ->  S  =  R ) )
74 1e0p1 10779 . . . . . . . 8  |-  1  =  ( 0  +  1 )
7574oveq1i 6100 . . . . . . 7  |-  ( 1 ... ( P  - 
1 ) )  =  ( ( 0  +  1 ) ... ( P  -  1 ) )
76 0z 10653 . . . . . . . 8  |-  0  e.  ZZ
77 fzp1ss 11502 . . . . . . . 8  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... ( P  -  1 ) ) 
C_  ( 0 ... ( P  -  1 ) ) )
7876, 77ax-mp 5 . . . . . . 7  |-  ( ( 0  +  1 ) ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) )
7975, 78eqsstri 3383 . . . . . 6  |-  ( 1 ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) )
8079sseli 3349 . . . . 5  |-  ( R  e.  ( 1 ... ( P  -  1 ) )  ->  R  e.  ( 0 ... ( P  -  1 ) ) )
81 eleq1 2501 . . . . 5  |-  ( S  =  R  ->  ( S  e.  ( 0 ... ( P  - 
1 ) )  <->  R  e.  ( 0 ... ( P  -  1 ) ) ) )
8280, 81syl5ibr 221 . . . 4  |-  ( S  =  R  ->  ( R  e.  ( 1 ... ( P  - 
1 ) )  ->  S  e.  ( 0 ... ( P  - 
1 ) ) ) )
83 oveq2 6098 . . . . . . 7  |-  ( S  =  R  ->  ( A  x.  S )  =  ( A  x.  R ) )
8483oveq1d 6105 . . . . . 6  |-  ( S  =  R  ->  (
( A  x.  S
)  -  1 )  =  ( ( A  x.  R )  - 
1 ) )
8584breq2d 4301 . . . . 5  |-  ( S  =  R  ->  ( P  ||  ( ( A  x.  S )  - 
1 )  <->  P  ||  (
( A  x.  R
)  -  1 ) ) )
8685biimprd 223 . . . 4  |-  ( S  =  R  ->  ( P  ||  ( ( A  x.  R )  - 
1 )  ->  P  ||  ( ( A  x.  S )  -  1 ) ) )
8782, 86anim12d 560 . . 3  |-  ( S  =  R  ->  (
( R  e.  ( 1 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  R
)  -  1 ) )  ->  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) ) )
883, 87syl5com 30 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( S  =  R  ->  ( S  e.  ( 0 ... ( P  - 
1 ) )  /\  P  ||  ( ( A  x.  S )  - 
1 ) ) ) )
8973, 88impbid 191 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  S
)  -  1 ) )  <->  S  =  R
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    C_ wss 3325   class class class wbr 4289   ` cfv 5415  (class class class)co 6090   CCcc 9276   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283    < clt 9414    <_ cle 9415    - cmin 9591   NNcn 10318   2c2 10367   NN0cn0 10575   ZZcz 10642   ZZ>=cuz 10857   RR+crp 10987   ...cfz 11433    mod cmo 11704   ^cexp 11861    || cdivides 13531    gcd cgcd 13686   Primecprime 13759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-rp 10988  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-dvds 13532  df-gcd 13687  df-prm 13760  df-phi 13837
This theorem is referenced by:  prmdivdiv  13858  modprminveq  13867  wilthlem1  22365  wilthlem2  22366
  Copyright terms: Public domain W3C validator