MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdiv Structured version   Visualization version   Unicode version

Theorem prmdiv 14812
Description: Show an explicit expression for the modular inverse of  A  mod  P. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
prmdiv.1  |-  R  =  ( ( A ^
( P  -  2 ) )  mod  P
)
Assertion
Ref Expression
prmdiv  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  e.  ( 1 ... ( P  - 
1 ) )  /\  P  ||  ( ( A  x.  R )  - 
1 ) ) )

Proof of Theorem prmdiv
StepHypRef Expression
1 nprmdvds1 14729 . . . . . 6  |-  ( P  e.  Prime  ->  -.  P  ||  1 )
213ad2ant1 1051 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  -.  P  ||  1 )
3 prmnn 14704 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  P  e.  NN )
433ad2ant1 1051 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  e.  NN )
5 simp2 1031 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  A  e.  ZZ )
6 prmz 14705 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  ZZ )
763ad2ant1 1051 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  e.  ZZ )
8 gcdcom 14563 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  P  e.  ZZ )  ->  ( A  gcd  P
)  =  ( P  gcd  A ) )
95, 7, 8syl2anc 673 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  gcd  P )  =  ( P  gcd  A
) )
10 coprm 14736 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
1110biimp3a 1397 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  gcd  A )  =  1 )
129, 11eqtrd 2505 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  gcd  P )  =  1 )
13 eulerth 14810 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )
144, 5, 12, 13syl3anc 1292 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )
15 phiprm 14804 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  ( phi `  P )  =  ( P  -  1 ) )
16153ad2ant1 1051 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( phi `  P )  =  ( P  -  1 ) )
17 nnm1nn0 10935 . . . . . . . . . . . . . 14  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
184, 17syl 17 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  -  1 )  e.  NN0 )
1916, 18eqeltrd 2549 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( phi `  P )  e. 
NN0 )
20 zexpcl 12325 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( phi `  P )  e.  NN0 )  -> 
( A ^ ( phi `  P ) )  e.  ZZ )
215, 19, 20syl2anc 673 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  e.  ZZ )
22 1zzd 10992 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  1  e.  ZZ )
23 moddvds 14389 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  ( A ^ ( phi `  P ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^
( phi `  P
) )  mod  P
)  =  ( 1  mod  P )  <->  P  ||  (
( A ^ ( phi `  P ) )  -  1 ) ) )
244, 21, 22, 23syl3anc 1292 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( ( A ^
( phi `  P
) )  mod  P
)  =  ( 1  mod  P )  <->  P  ||  (
( A ^ ( phi `  P ) )  -  1 ) ) )
2514, 24mpbid 215 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  ||  ( ( A ^
( phi `  P
) )  -  1 ) )
26 prmuz2 14721 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
27263ad2ant1 1051 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  e.  ( ZZ>= `  2 )
)
28 uznn0sub 11214 . . . . . . . . . . . . . . . 16  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  -  2 )  e. 
NN0 )
2927, 28syl 17 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  -  2 )  e.  NN0 )
30 zexpcl 12325 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( P  -  2
)  e.  NN0 )  ->  ( A ^ ( P  -  2 ) )  e.  ZZ )
315, 29, 30syl2anc 673 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( P  - 
2 ) )  e.  ZZ )
3231zred 11063 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( P  - 
2 ) )  e.  RR )
3332, 4nndivred 10680 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( P  -  2 ) )  /  P )  e.  RR )
3433flcld 12067 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) )  e.  ZZ )
355, 34zmulcld 11069 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) )  e.  ZZ )
36 dvdsmul1 14401 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  ( A  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) )  e.  ZZ )  ->  P  ||  ( P  x.  ( A  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) )
377, 35, 36syl2anc 673 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  ||  ( P  x.  ( A  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) ) ) )
38 1z 10991 . . . . . . . . . . 11  |-  1  e.  ZZ
39 zsubcl 11003 . . . . . . . . . . 11  |-  ( ( ( A ^ ( phi `  P ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( A ^ ( phi `  P ) )  -  1 )  e.  ZZ )
4021, 38, 39sylancl 675 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  -  1 )  e.  ZZ )
417, 35zmulcld 11069 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) )  e.  ZZ )
42 dvds2sub 14412 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  ( ( A ^
( phi `  P
) )  -  1 )  e.  ZZ  /\  ( P  x.  ( A  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) ) )  e.  ZZ )  -> 
( ( P  ||  ( ( A ^
( phi `  P
) )  -  1 )  /\  P  ||  ( P  x.  ( A  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) ) ) )  ->  P  ||  (
( ( A ^
( phi `  P
) )  -  1 )  -  ( P  x.  ( A  x.  ( |_ `  ( ( A ^ ( P  -  2 ) )  /  P ) ) ) ) ) ) )
437, 40, 41, 42syl3anc 1292 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( P  ||  (
( A ^ ( phi `  P ) )  -  1 )  /\  P  ||  ( P  x.  ( A  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) )  ->  P  ||  ( ( ( A ^ ( phi `  P ) )  - 
1 )  -  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) ) ) ) )
4425, 37, 43mp2and 693 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  ||  ( ( ( A ^ ( phi `  P ) )  - 
1 )  -  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) ) ) )
455zcnd 11064 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  A  e.  CC )
4631zcnd 11064 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( P  - 
2 ) )  e.  CC )
477, 34zmulcld 11069 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) )  e.  ZZ )
4847zcnd 11064 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) )  e.  CC )
4945, 46, 48subdid 10095 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  x.  ( ( A ^ ( P  - 
2 ) )  -  ( P  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) )  =  ( ( A  x.  ( A ^ ( P  - 
2 ) ) )  -  ( A  x.  ( P  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) ) )
50 prmdiv.1 . . . . . . . . . . . . 13  |-  R  =  ( ( A ^
( P  -  2 ) )  mod  P
)
514nnrpd 11362 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  e.  RR+ )
52 modval 12131 . . . . . . . . . . . . . 14  |-  ( ( ( A ^ ( P  -  2 ) )  e.  RR  /\  P  e.  RR+ )  -> 
( ( A ^
( P  -  2 ) )  mod  P
)  =  ( ( A ^ ( P  -  2 ) )  -  ( P  x.  ( |_ `  ( ( A ^ ( P  -  2 ) )  /  P ) ) ) ) )
5332, 51, 52syl2anc 673 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  =  ( ( A ^ ( P  - 
2 ) )  -  ( P  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) )
5450, 53syl5eq 2517 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  R  =  ( ( A ^ ( P  - 
2 ) )  -  ( P  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) )
5554oveq2d 6324 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  x.  R )  =  ( A  x.  ( ( A ^
( P  -  2 ) )  -  ( P  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) ) ) ) )
56 2m1e1 10746 . . . . . . . . . . . . . . . . 17  |-  ( 2  -  1 )  =  1
5756oveq2i 6319 . . . . . . . . . . . . . . . 16  |-  ( P  -  ( 2  -  1 ) )  =  ( P  -  1 )
5816, 57syl6eqr 2523 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( phi `  P )  =  ( P  -  (
2  -  1 ) ) )
594nncnd 10647 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  e.  CC )
60 2cnd 10704 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  2  e.  CC )
61 1cnd 9677 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  1  e.  CC )
6259, 60, 61subsubd 10033 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  -  ( 2  -  1 ) )  =  ( ( P  -  2 )  +  1 ) )
6358, 62eqtrd 2505 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( phi `  P )  =  ( ( P  - 
2 )  +  1 ) )
6463oveq2d 6324 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  =  ( A ^ (
( P  -  2 )  +  1 ) ) )
6545, 29expp1d 12455 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( ( P  -  2 )  +  1 ) )  =  ( ( A ^
( P  -  2 ) )  x.  A
) )
6646, 45mulcomd 9682 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( P  -  2 ) )  x.  A )  =  ( A  x.  ( A ^ ( P  -  2 ) ) ) )
6764, 65, 663eqtrd 2509 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  =  ( A  x.  ( A ^ ( P  - 
2 ) ) ) )
6834zcnd 11064 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) )  e.  CC )
6959, 45, 68mul12d 9860 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) )  =  ( A  x.  ( P  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) ) ) )
7067, 69oveq12d 6326 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  -  ( P  x.  ( A  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) )  =  ( ( A  x.  ( A ^ ( P  - 
2 ) ) )  -  ( A  x.  ( P  x.  ( |_ `  ( ( A ^ ( P  - 
2 ) )  /  P ) ) ) ) ) )
7149, 55, 703eqtr4d 2515 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  x.  R )  =  ( ( A ^ ( phi `  P ) )  -  ( P  x.  ( A  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) ) ) ) )
7271oveq1d 6323 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A  x.  R
)  -  1 )  =  ( ( ( A ^ ( phi `  P ) )  -  ( P  x.  ( A  x.  ( |_ `  ( ( A ^
( P  -  2 ) )  /  P
) ) ) ) )  -  1 ) )
7321zcnd 11064 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( phi `  P ) )  e.  CC )
7441zcnd 11064 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) )  e.  CC )
7573, 74, 61sub32d 10037 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( ( A ^
( phi `  P
) )  -  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) ) )  -  1 )  =  ( ( ( A ^ ( phi `  P ) )  - 
1 )  -  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) ) ) )
7672, 75eqtrd 2505 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A  x.  R
)  -  1 )  =  ( ( ( A ^ ( phi `  P ) )  - 
1 )  -  ( P  x.  ( A  x.  ( |_ `  (
( A ^ ( P  -  2 ) )  /  P ) ) ) ) ) )
7744, 76breqtrrd 4422 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  ||  ( ( A  x.  R )  -  1 ) )
78 oveq2 6316 . . . . . . . . 9  |-  ( R  =  0  ->  ( A  x.  R )  =  ( A  x.  0 ) )
7978oveq1d 6323 . . . . . . . 8  |-  ( R  =  0  ->  (
( A  x.  R
)  -  1 )  =  ( ( A  x.  0 )  - 
1 ) )
8079breq2d 4407 . . . . . . 7  |-  ( R  =  0  ->  ( P  ||  ( ( A  x.  R )  - 
1 )  <->  P  ||  (
( A  x.  0 )  -  1 ) ) )
8177, 80syl5ibcom 228 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  =  0  ->  P 
||  ( ( A  x.  0 )  - 
1 ) ) )
8245mul01d 9850 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  x.  0 )  =  0 )
8382oveq1d 6323 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A  x.  0 )  -  1 )  =  ( 0  -  1 ) )
84 df-neg 9883 . . . . . . . . 9  |-  -u 1  =  ( 0  -  1 )
8583, 84syl6eqr 2523 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A  x.  0 )  -  1 )  =  -u 1 )
8685breq2d 4407 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  ||  ( ( A  x.  0 )  - 
1 )  <->  P  ||  -u 1
) )
87 dvdsnegb 14397 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  1  e.  ZZ )  ->  ( P  ||  1  <->  P 
||  -u 1 ) )
887, 38, 87sylancl 675 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  ||  1  <->  P  ||  -u 1
) )
8986, 88bitr4d 264 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  ||  ( ( A  x.  0 )  - 
1 )  <->  P  ||  1
) )
9081, 89sylibd 222 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  =  0  ->  P 
||  1 ) )
912, 90mtod 182 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  -.  R  =  0 )
92 zmodfz 12151 . . . . . . . 8  |-  ( ( ( A ^ ( P  -  2 ) )  e.  ZZ  /\  P  e.  NN )  ->  ( ( A ^
( P  -  2 ) )  mod  P
)  e.  ( 0 ... ( P  - 
1 ) ) )
9331, 4, 92syl2anc 673 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  e.  ( 0 ... ( P  -  1 ) ) )
9450, 93syl5eqel 2553 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  R  e.  ( 0 ... ( P  -  1 ) ) )
95 nn0uz 11217 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
9618, 95syl6eleq 2559 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  -  1 )  e.  ( ZZ>= `  0
) )
97 elfzp12 11899 . . . . . . 7  |-  ( ( P  -  1 )  e.  ( ZZ>= `  0
)  ->  ( R  e.  ( 0 ... ( P  -  1 ) )  <->  ( R  =  0  \/  R  e.  ( ( 0  +  1 ) ... ( P  -  1 ) ) ) ) )
9896, 97syl 17 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  e.  ( 0 ... ( P  - 
1 ) )  <->  ( R  =  0  \/  R  e.  ( ( 0  +  1 ) ... ( P  -  1 ) ) ) ) )
9994, 98mpbid 215 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  =  0  \/  R  e.  ( (
0  +  1 ) ... ( P  - 
1 ) ) ) )
10099ord 384 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( -.  R  =  0  ->  R  e.  ( ( 0  +  1 ) ... ( P  - 
1 ) ) ) )
10191, 100mpd 15 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  R  e.  ( ( 0  +  1 ) ... ( P  -  1 ) ) )
102 1e0p1 11102 . . . 4  |-  1  =  ( 0  +  1 )
103102oveq1i 6318 . . 3  |-  ( 1 ... ( P  - 
1 ) )  =  ( ( 0  +  1 ) ... ( P  -  1 ) )
104101, 103syl6eleqr 2560 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  R  e.  ( 1 ... ( P  -  1 ) ) )
105104, 77jca 541 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  e.  ( 1 ... ( P  - 
1 ) )  /\  P  ||  ( ( A  x.  R )  - 
1 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   class class class wbr 4395   ` cfv 5589  (class class class)co 6308   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    - cmin 9880   -ucneg 9881    / cdiv 10291   NNcn 10631   2c2 10681   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   RR+crp 11325   ...cfz 11810   |_cfl 12059    mod cmo 12129   ^cexp 12310    || cdvds 14382    gcd cgcd 14547   Primecprime 14701   phicphi 14790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-dvds 14383  df-gcd 14548  df-prm 14702  df-phi 14793
This theorem is referenced by:  prmdiveq  14813  prmdivdiv  14814  modprminv  14829  wilthlem2  24073  wilthlem3  24074
  Copyright terms: Public domain W3C validator