Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  preqsn Structured version   Unicode version

Theorem preqsn 4152
 Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.)
Hypotheses
Ref Expression
preqsn.1
preqsn.2
preqsn.3
Assertion
Ref Expression
preqsn

Proof of Theorem preqsn
StepHypRef Expression
1 dfsn2 3982 . . 3
21eqeq2i 2418 . 2
3 preqsn.1 . . . 4
4 preqsn.2 . . . 4
5 preqsn.3 . . . 4
63, 4, 5, 5preq12b 4145 . . 3
7 oridm 512 . . . 4
8 eqtr3 2428 . . . . . 6
9 simpr 459 . . . . . 6
108, 9jca 530 . . . . 5
11 eqtr 2426 . . . . . 6
12 simpr 459 . . . . . 6
1311, 12jca 530 . . . . 5
1410, 13impbii 188 . . . 4
157, 14bitri 249 . . 3
166, 15bitri 249 . 2
172, 16bitri 249 1
 Colors of variables: wff setvar class Syntax hints:   wb 184   wo 366   wa 367   wceq 1403   wcel 1840  cvv 3056  csn 3969  cpr 3971 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378 This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-v 3058  df-un 3416  df-sn 3970  df-pr 3972 This theorem is referenced by:  opeqsn  4683  relop  5093  hash2prde  12470  symg2bas  16637
 Copyright terms: Public domain W3C validator