Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preduz Structured version   Unicode version

Theorem preduz 27797
Description: The value of the predecessor class over an upper integer set. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
preduz  |-  ( N  e.  ( ZZ>= `  M
)  ->  Pred (  <  ,  ( ZZ>= `  M
) ,  N )  =  ( M ... ( N  -  1
) ) )

Proof of Theorem preduz
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 3073 . . . . . 6  |-  x  e. 
_V
21elpred 27774 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( x  e.  Pred (  <  , 
( ZZ>= `  M ) ,  N )  <->  ( x  e.  ( ZZ>= `  M )  /\  x  <  N ) ) )
3 eluzelz 10973 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
4 eluzelz 10973 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
5 zltlem1 10800 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ )  ->  ( x  <  N  <->  x  <_  ( N  - 
1 ) ) )
63, 4, 5syl2anr 478 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( x  <  N  <->  x  <_  ( N  -  1 ) ) )
76pm5.32da 641 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
x  e.  ( ZZ>= `  M )  /\  x  <  N )  <->  ( x  e.  ( ZZ>= `  M )  /\  x  <_  ( N  -  1 ) ) ) )
8 eluzel2 10969 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
9 eluz1 10968 . . . . . . . 8  |-  ( M  e.  ZZ  ->  (
x  e.  ( ZZ>= `  M )  <->  ( x  e.  ZZ  /\  M  <_  x ) ) )
108, 9syl 16 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( x  e.  ( ZZ>= `  M )  <->  ( x  e.  ZZ  /\  M  <_  x ) ) )
1110anbi1d 704 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
x  e.  ( ZZ>= `  M )  /\  x  <_  ( N  -  1 ) )  <->  ( (
x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  - 
1 ) ) ) )
127, 11bitrd 253 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
x  e.  ( ZZ>= `  M )  /\  x  <  N )  <->  ( (
x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  - 
1 ) ) ) )
132, 12bitrd 253 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( x  e.  Pred (  <  , 
( ZZ>= `  M ) ,  N )  <->  ( (
x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  - 
1 ) ) ) )
14 peano2zm 10791 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
154, 14syl 16 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  -  1 )  e.  ZZ )
168, 15jca 532 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ ) )
1716biantrurd 508 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) )  <-> 
( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  (
( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) ) ) ) )
1813, 17bitrd 253 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( x  e.  Pred (  <  , 
( ZZ>= `  M ) ,  N )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( ( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) ) ) ) )
19 elfz2 11547 . . . 4  |-  ( x  e.  ( M ... ( N  -  1
) )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ  /\  x  e.  ZZ )  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) ) )
20 df-3an 967 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ZZ  /\  x  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  x  e.  ZZ ) )
2120anbi1i 695 . . . 4  |-  ( ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ  /\  x  e.  ZZ )  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) )  <->  ( ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ZZ )  /\  x  e.  ZZ )  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) ) )
22 anass 649 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  x  e.  ZZ )  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( x  e.  ZZ  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) ) ) )
23 anass 649 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) )  <-> 
( x  e.  ZZ  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) ) )
2423anbi2i 694 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( ( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) ) )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( x  e.  ZZ  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) ) ) )
2522, 24bitr4i 252 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  x  e.  ZZ )  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( ( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) ) ) )
2619, 21, 253bitri 271 . . 3  |-  ( x  e.  ( M ... ( N  -  1
) )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( ( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) ) ) )
2718, 26syl6bbr 263 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( x  e.  Pred (  <  , 
( ZZ>= `  M ) ,  N )  <->  x  e.  ( M ... ( N  -  1 ) ) ) )
2827eqrdv 2448 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  Pred (  <  ,  ( ZZ>= `  M
) ,  N )  =  ( M ... ( N  -  1
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   class class class wbr 4392   ` cfv 5518  (class class class)co 6192   1c1 9386    < clt 9521    <_ cle 9522    - cmin 9698   ZZcz 10749   ZZ>=cuz 10964   ...cfz 11540   Predcpred 27760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-1st 6679  df-2nd 6680  df-recs 6934  df-rdg 6968  df-er 7203  df-en 7413  df-dom 7414  df-sdom 7415  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-nn 10426  df-n0 10683  df-z 10750  df-uz 10965  df-fz 11541  df-pred 27761
This theorem is referenced by:  prednn  27798  prednn0  27799  uzsinds  27813
  Copyright terms: Public domain W3C validator