MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preduz Structured version   Unicode version

Theorem preduz 11850
Description: The value of the predecessor class over an upper integer set. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
preduz  |-  ( N  e.  ( ZZ>= `  M
)  ->  Pred (  <  ,  ( ZZ>= `  M
) ,  N )  =  ( M ... ( N  -  1
) ) )

Proof of Theorem preduz
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 3062 . . . . . 6  |-  x  e. 
_V
21elpred 5380 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( x  e.  Pred (  <  , 
( ZZ>= `  M ) ,  N )  <->  ( x  e.  ( ZZ>= `  M )  /\  x  <  N ) ) )
3 eluzelz 11136 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
4 eluzelz 11136 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
5 zltlem1 10957 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ )  ->  ( x  <  N  <->  x  <_  ( N  - 
1 ) ) )
63, 4, 5syl2anr 476 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( x  <  N  <->  x  <_  ( N  -  1 ) ) )
76pm5.32da 639 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
x  e.  ( ZZ>= `  M )  /\  x  <  N )  <->  ( x  e.  ( ZZ>= `  M )  /\  x  <_  ( N  -  1 ) ) ) )
8 eluzel2 11132 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
9 eluz1 11131 . . . . . . . 8  |-  ( M  e.  ZZ  ->  (
x  e.  ( ZZ>= `  M )  <->  ( x  e.  ZZ  /\  M  <_  x ) ) )
108, 9syl 17 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( x  e.  ( ZZ>= `  M )  <->  ( x  e.  ZZ  /\  M  <_  x ) ) )
1110anbi1d 703 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
x  e.  ( ZZ>= `  M )  /\  x  <_  ( N  -  1 ) )  <->  ( (
x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  - 
1 ) ) ) )
127, 11bitrd 253 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
x  e.  ( ZZ>= `  M )  /\  x  <  N )  <->  ( (
x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  - 
1 ) ) ) )
132, 12bitrd 253 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( x  e.  Pred (  <  , 
( ZZ>= `  M ) ,  N )  <->  ( (
x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  - 
1 ) ) ) )
14 peano2zm 10948 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
154, 14syl 17 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  -  1 )  e.  ZZ )
168, 15jca 530 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ ) )
1716biantrurd 506 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) )  <-> 
( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  (
( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) ) ) ) )
1813, 17bitrd 253 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( x  e.  Pred (  <  , 
( ZZ>= `  M ) ,  N )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( ( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) ) ) ) )
19 elfz2 11733 . . . 4  |-  ( x  e.  ( M ... ( N  -  1
) )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ  /\  x  e.  ZZ )  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) ) )
20 df-3an 976 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ZZ  /\  x  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  x  e.  ZZ ) )
2120anbi1i 693 . . . 4  |-  ( ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ  /\  x  e.  ZZ )  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) )  <->  ( ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ZZ )  /\  x  e.  ZZ )  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) ) )
22 anass 647 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  x  e.  ZZ )  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( x  e.  ZZ  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) ) ) )
23 anass 647 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) )  <-> 
( x  e.  ZZ  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) ) )
2423anbi2i 692 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( ( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) ) )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( x  e.  ZZ  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) ) ) )
2522, 24bitr4i 252 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  x  e.  ZZ )  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( ( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) ) ) )
2619, 21, 253bitri 271 . . 3  |-  ( x  e.  ( M ... ( N  -  1
) )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( ( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) ) ) )
2718, 26syl6bbr 263 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( x  e.  Pred (  <  , 
( ZZ>= `  M ) ,  N )  <->  x  e.  ( M ... ( N  -  1 ) ) ) )
2827eqrdv 2399 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  Pred (  <  ,  ( ZZ>= `  M
) ,  N )  =  ( M ... ( N  -  1
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   class class class wbr 4395   Predcpred 5366   ` cfv 5569  (class class class)co 6278   1c1 9523    < clt 9658    <_ cle 9659    - cmin 9841   ZZcz 10905   ZZ>=cuz 11127   ...cfz 11726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-n0 10837  df-z 10906  df-uz 11128  df-fz 11727
This theorem is referenced by:  prednn  11851  prednn0  11852  uzsinds  12137
  Copyright terms: Public domain W3C validator