MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predso Structured version   Unicode version

Theorem predso 5418
Description: Property of the predecessor class for strict orderings. (Contributed by Scott Fenton, 11-Feb-2011.)
Assertion
Ref Expression
predso  |-  ( ( R  Or  A  /\  X  e.  A )  ->  ( Y  e.  Pred ( R ,  A ,  X )  ->  Pred ( R ,  A ,  Y )  C_  Pred ( R ,  A ,  X ) ) )

Proof of Theorem predso
StepHypRef Expression
1 sopo 4792 . 2  |-  ( R  Or  A  ->  R  Po  A )
2 predpo 5417 . 2  |-  ( ( R  Po  A  /\  X  e.  A )  ->  ( Y  e.  Pred ( R ,  A ,  X )  ->  Pred ( R ,  A ,  Y )  C_  Pred ( R ,  A ,  X ) ) )
31, 2sylan 473 1  |-  ( ( R  Or  A  /\  X  e.  A )  ->  ( Y  e.  Pred ( R ,  A ,  X )  ->  Pred ( R ,  A ,  Y )  C_  Pred ( R ,  A ,  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    e. wcel 1870    C_ wss 3442    Po wpo 4773    Or wor 4774   Predcpred 5398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pr 4661
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-br 4427  df-opab 4485  df-po 4775  df-so 4776  df-xp 4860  df-cnv 4862  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator