MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsxmetlem Structured version   Visualization version   Unicode version

Theorem prdsxmetlem 21395
Description: The product metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsdsf.y  |-  Y  =  ( S X_s ( x  e.  I  |->  R ) )
prdsdsf.b  |-  B  =  ( Base `  Y
)
prdsdsf.v  |-  V  =  ( Base `  R
)
prdsdsf.e  |-  E  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
prdsdsf.d  |-  D  =  ( dist `  Y
)
prdsdsf.s  |-  ( ph  ->  S  e.  W )
prdsdsf.i  |-  ( ph  ->  I  e.  X )
prdsdsf.r  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Z )
prdsdsf.m  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( *Met `  V ) )
Assertion
Ref Expression
prdsxmetlem  |-  ( ph  ->  D  e.  ( *Met `  B ) )
Distinct variable groups:    x, I    ph, x    x, B    x, D
Allowed substitution hints:    R( x)    S( x)    E( x)    V( x)    W( x)    X( x)    Y( x)    Z( x)

Proof of Theorem prdsxmetlem
Dummy variables  f 
g  h  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsdsf.b . . . 4  |-  B  =  ( Base `  Y
)
2 fvex 5880 . . . 4  |-  ( Base `  Y )  e.  _V
31, 2eqeltri 2527 . . 3  |-  B  e. 
_V
43a1i 11 . 2  |-  ( ph  ->  B  e.  _V )
5 prdsdsf.y . . . 4  |-  Y  =  ( S X_s ( x  e.  I  |->  R ) )
6 prdsdsf.v . . . 4  |-  V  =  ( Base `  R
)
7 prdsdsf.e . . . 4  |-  E  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
8 prdsdsf.d . . . 4  |-  D  =  ( dist `  Y
)
9 prdsdsf.s . . . 4  |-  ( ph  ->  S  e.  W )
10 prdsdsf.i . . . 4  |-  ( ph  ->  I  e.  X )
11 prdsdsf.r . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Z )
12 prdsdsf.m . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( *Met `  V ) )
135, 1, 6, 7, 8, 9, 10, 11, 12prdsdsf 21394 . . 3  |-  ( ph  ->  D : ( B  X.  B ) --> ( 0 [,] +oo )
)
14 iccssxr 11724 . . 3  |-  ( 0 [,] +oo )  C_  RR*
15 fss 5742 . . 3  |-  ( ( D : ( B  X.  B ) --> ( 0 [,] +oo )  /\  ( 0 [,] +oo )  C_  RR* )  ->  D : ( B  X.  B ) --> RR* )
1613, 14, 15sylancl 669 . 2  |-  ( ph  ->  D : ( B  X.  B ) --> RR* )
1713fovrnda 6445 . . 3  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f D g )  e.  ( 0 [,] +oo ) )
18 elxrge0 11748 . . . 4  |-  ( ( f D g )  e.  ( 0 [,] +oo )  <->  ( ( f D g )  e. 
RR*  /\  0  <_  ( f D g ) ) )
1918simprbi 466 . . 3  |-  ( ( f D g )  e.  ( 0 [,] +oo )  ->  0  <_ 
( f D g ) )
2017, 19syl 17 . 2  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
0  <_  ( f D g ) )
219adantr 467 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  S  e.  W )
2210adantr 467 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  I  e.  X )
2311ralrimiva 2804 . . . . . 6  |-  ( ph  ->  A. x  e.  I  R  e.  Z )
2423adantr 467 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I  R  e.  Z )
25 simprl 765 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  e.  B )
26 simprr 767 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  e.  B )
275, 1, 21, 22, 24, 25, 26, 6, 7, 8prdsdsval3 15395 . . . 4  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f D g )  =  sup (
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
2827breq1d 4415 . . 3  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( ( f D g )  <_  0  <->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  <_  0
) )
2912adantlr 722 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  E  e.  ( *Met `  V ) )
305, 1, 21, 22, 24, 6, 25prdsbascl 15393 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I 
( f `  x
)  e.  V )
3130r19.21bi 2759 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
f `  x )  e.  V )
325, 1, 21, 22, 24, 6, 26prdsbascl 15393 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I 
( g `  x
)  e.  V )
3332r19.21bi 2759 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
g `  x )  e.  V )
34 xmetcl 21358 . . . . . . . 8  |-  ( ( E  e.  ( *Met `  V )  /\  ( f `  x )  e.  V  /\  ( g `  x
)  e.  V )  ->  ( ( f `
 x ) E ( g `  x
) )  e.  RR* )
3529, 31, 33, 34syl3anc 1269 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
( f `  x
) E ( g `
 x ) )  e.  RR* )
36 eqid 2453 . . . . . . 7  |-  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  =  ( x  e.  I  |->  ( ( f `
 x ) E ( g `  x
) ) )
3735, 36fmptd 6051 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) ) : I -->
RR* )
38 frn 5740 . . . . . 6  |-  ( ( x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) ) : I --> RR*  ->  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  C_  RR* )
3937, 38syl 17 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  C_  RR* )
40 0xr 9692 . . . . . . 7  |-  0  e.  RR*
4140a1i 11 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
0  e.  RR* )
4241snssd 4120 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  { 0 }  C_  RR* )
4339, 42unssd 3612 . . . 4  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  C_  RR* )
44 supxrleub 11619 . . . 4  |-  ( ( ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  C_  RR*  /\  0  e.  RR* )  ->  ( sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  <_  0  <->  A. z  e.  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } ) z  <_  0 ) )
4543, 40, 44sylancl 669 . . 3  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( sup ( ( ran  ( x  e.  I  |->  ( ( f `
 x ) E ( g `  x
) ) )  u. 
{ 0 } ) ,  RR* ,  <  )  <_  0  <->  A. z  e.  ( ran  ( x  e.  I  |->  ( ( f `
 x ) E ( g `  x
) ) )  u. 
{ 0 } ) z  <_  0 ) )
46 0le0 10706 . . . . . . 7  |-  0  <_  0
47 c0ex 9642 . . . . . . . 8  |-  0  e.  _V
48 breq1 4408 . . . . . . . 8  |-  ( z  =  0  ->  (
z  <_  0  <->  0  <_  0 ) )
4947, 48ralsn 4012 . . . . . . 7  |-  ( A. z  e.  { 0 } z  <_  0  <->  0  <_  0 )
5046, 49mpbir 213 . . . . . 6  |-  A. z  e.  { 0 } z  <_  0
51 ralunb 3617 . . . . . 6  |-  ( A. z  e.  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } ) z  <_  0  <->  ( A. z  e.  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) ) z  <_  0  /\  A. z  e.  { 0 } z  <_  0
) )
5250, 51mpbiran2 931 . . . . 5  |-  ( A. z  e.  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } ) z  <_  0  <->  A. z  e.  ran  ( x  e.  I  |->  ( ( f `
 x ) E ( g `  x
) ) ) z  <_  0 )
53 ovex 6323 . . . . . . 7  |-  ( ( f `  x ) E ( g `  x ) )  e. 
_V
5453rgenw 2751 . . . . . 6  |-  A. x  e.  I  ( (
f `  x ) E ( g `  x ) )  e. 
_V
55 breq1 4408 . . . . . . 7  |-  ( z  =  ( ( f `
 x ) E ( g `  x
) )  ->  (
z  <_  0  <->  ( (
f `  x ) E ( g `  x ) )  <_ 
0 ) )
5636, 55ralrnmpt 6036 . . . . . 6  |-  ( A. x  e.  I  (
( f `  x
) E ( g `
 x ) )  e.  _V  ->  ( A. z  e.  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) ) z  <_ 
0  <->  A. x  e.  I 
( ( f `  x ) E ( g `  x ) )  <_  0 ) )
5754, 56ax-mp 5 . . . . 5  |-  ( A. z  e.  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) ) z  <_  0  <->  A. x  e.  I  ( (
f `  x ) E ( g `  x ) )  <_ 
0 )
5852, 57bitri 253 . . . 4  |-  ( A. z  e.  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } ) z  <_  0  <->  A. x  e.  I  ( (
f `  x ) E ( g `  x ) )  <_ 
0 )
59 xmetge0 21371 . . . . . . . . 9  |-  ( ( E  e.  ( *Met `  V )  /\  ( f `  x )  e.  V  /\  ( g `  x
)  e.  V )  ->  0  <_  (
( f `  x
) E ( g `
 x ) ) )
6029, 31, 33, 59syl3anc 1269 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  0  <_  ( ( f `  x ) E ( g `  x ) ) )
6160biantrud 510 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
( ( f `  x ) E ( g `  x ) )  <_  0  <->  ( (
( f `  x
) E ( g `
 x ) )  <_  0  /\  0  <_  ( ( f `  x ) E ( g `  x ) ) ) ) )
62 xrletri3 11458 . . . . . . . 8  |-  ( ( ( ( f `  x ) E ( g `  x ) )  e.  RR*  /\  0  e.  RR* )  ->  (
( ( f `  x ) E ( g `  x ) )  =  0  <->  (
( ( f `  x ) E ( g `  x ) )  <_  0  /\  0  <_  ( ( f `
 x ) E ( g `  x
) ) ) ) )
6335, 40, 62sylancl 669 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
( ( f `  x ) E ( g `  x ) )  =  0  <->  (
( ( f `  x ) E ( g `  x ) )  <_  0  /\  0  <_  ( ( f `
 x ) E ( g `  x
) ) ) ) )
64 xmeteq0 21365 . . . . . . . 8  |-  ( ( E  e.  ( *Met `  V )  /\  ( f `  x )  e.  V  /\  ( g `  x
)  e.  V )  ->  ( ( ( f `  x ) E ( g `  x ) )  =  0  <->  ( f `  x )  =  ( g `  x ) ) )
6529, 31, 33, 64syl3anc 1269 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
( ( f `  x ) E ( g `  x ) )  =  0  <->  (
f `  x )  =  ( g `  x ) ) )
6661, 63, 653bitr2d 285 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
( ( f `  x ) E ( g `  x ) )  <_  0  <->  ( f `  x )  =  ( g `  x ) ) )
6766ralbidva 2826 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( A. x  e.  I  ( ( f `
 x ) E ( g `  x
) )  <_  0  <->  A. x  e.  I  ( f `  x )  =  ( g `  x ) ) )
68 eqid 2453 . . . . . . . . . 10  |-  ( x  e.  I  |->  R )  =  ( x  e.  I  |->  R )
6968fnmpt 5709 . . . . . . . . 9  |-  ( A. x  e.  I  R  e.  Z  ->  ( x  e.  I  |->  R )  Fn  I )
7023, 69syl 17 . . . . . . . 8  |-  ( ph  ->  ( x  e.  I  |->  R )  Fn  I
)
7170adantr 467 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( x  e.  I  |->  R )  Fn  I
)
725, 1, 21, 22, 71, 25prdsbasfn 15381 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  Fn  I )
735, 1, 21, 22, 71, 26prdsbasfn 15381 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  Fn  I )
74 eqfnfv 5981 . . . . . 6  |-  ( ( f  Fn  I  /\  g  Fn  I )  ->  ( f  =  g  <->  A. x  e.  I 
( f `  x
)  =  ( g `
 x ) ) )
7572, 73, 74syl2anc 667 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f  =  g  <->  A. x  e.  I 
( f `  x
)  =  ( g `
 x ) ) )
7667, 75bitr4d 260 . . . 4  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( A. x  e.  I  ( ( f `
 x ) E ( g `  x
) )  <_  0  <->  f  =  g ) )
7758, 76syl5bb 261 . . 3  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( A. z  e.  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } ) z  <_  0  <->  f  =  g ) )
7828, 45, 773bitrd 283 . 2  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( ( f D g )  <_  0  <->  f  =  g ) )
79273adantr3 1170 . . . 4  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B ) )  -> 
( f D g )  =  sup (
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
80793adant3 1029 . . 3  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  ( f D g )  =  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } ) , 
RR* ,  <  ) )
81123ad2antl1 1171 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  E  e.  ( *Met `  V ) )
82303adantr3 1170 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B ) )  ->  A. x  e.  I 
( f `  x
)  e.  V )
83823adant3 1029 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  A. x  e.  I  ( f `  x )  e.  V
)
8483r19.21bi 2759 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
f `  x )  e.  V )
85323adantr3 1170 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B ) )  ->  A. x  e.  I 
( g `  x
)  e.  V )
86853adant3 1029 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  A. x  e.  I  ( g `  x )  e.  V
)
8786r19.21bi 2759 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
g `  x )  e.  V )
8881, 84, 87, 34syl3anc 1269 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( f `  x
) E ( g `
 x ) )  e.  RR* )
8993ad2ant1 1030 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  S  e.  W )
90103ad2ant1 1030 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  I  e.  X )
91233ad2ant1 1030 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  A. x  e.  I  R  e.  Z )
92 simp23 1044 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  h  e.  B )
935, 1, 89, 90, 91, 6, 92prdsbascl 15393 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  A. x  e.  I  ( h `  x )  e.  V
)
9493r19.21bi 2759 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
h `  x )  e.  V )
95 xmetcl 21358 . . . . . . . . . . . 12  |-  ( ( E  e.  ( *Met `  V )  /\  ( h `  x )  e.  V  /\  ( f `  x
)  e.  V )  ->  ( ( h `
 x ) E ( f `  x
) )  e.  RR* )
9681, 94, 84, 95syl3anc 1269 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( h `  x
) E ( f `
 x ) )  e.  RR* )
97 simp3l 1037 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  ( h D f )  e.  RR )
9897adantr 467 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
h D f )  e.  RR )
99 xmetge0 21371 . . . . . . . . . . . 12  |-  ( ( E  e.  ( *Met `  V )  /\  ( h `  x )  e.  V  /\  ( f `  x
)  e.  V )  ->  0  <_  (
( h `  x
) E ( f `
 x ) ) )
10081, 94, 84, 99syl3anc 1269 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  0  <_  ( ( h `  x ) E ( f `  x ) ) )
101 eqid 2453 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  I  |->  ( ( h `  x ) E ( f `  x ) ) )  =  ( x  e.  I  |->  ( ( h `
 x ) E ( f `  x
) ) )
10296, 101fmptd 6051 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  ( x  e.  I  |->  ( ( h `  x ) E ( f `  x ) ) ) : I --> RR* )
103 frn 5740 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  I  |->  ( ( h `  x
) E ( f `
 x ) ) ) : I --> RR*  ->  ran  ( x  e.  I  |->  ( ( h `  x ) E ( f `  x ) ) )  C_  RR* )
104102, 103syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  ran  ( x  e.  I  |->  ( ( h `  x ) E ( f `  x ) ) ) 
C_  RR* )
10540a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  0  e.  RR* )
106105snssd 4120 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  { 0 }  C_  RR* )
107104, 106unssd 3612 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  ( ran  ( x  e.  I  |->  ( ( h `  x ) E ( f `  x ) ) )  u.  {
0 } )  C_  RR* )
108107adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  ( ran  ( x  e.  I  |->  ( ( h `  x ) E ( f `  x ) ) )  u.  {
0 } )  C_  RR* )
109 ssun1 3599 . . . . . . . . . . . . . 14  |-  ran  (
x  e.  I  |->  ( ( h `  x
) E ( f `
 x ) ) )  C_  ( ran  ( x  e.  I  |->  ( ( h `  x ) E ( f `  x ) ) )  u.  {
0 } )
110 ovex 6323 . . . . . . . . . . . . . . . . 17  |-  ( ( h `  x ) E ( f `  x ) )  e. 
_V
111110elabrex 6153 . . . . . . . . . . . . . . . 16  |-  ( x  e.  I  ->  (
( h `  x
) E ( f `
 x ) )  e.  { z  |  E. x  e.  I 
z  =  ( ( h `  x ) E ( f `  x ) ) } )
112111adantl 468 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( h `  x
) E ( f `
 x ) )  e.  { z  |  E. x  e.  I 
z  =  ( ( h `  x ) E ( f `  x ) ) } )
113101rnmpt 5083 . . . . . . . . . . . . . . 15  |-  ran  (
x  e.  I  |->  ( ( h `  x
) E ( f `
 x ) ) )  =  { z  |  E. x  e.  I  z  =  ( ( h `  x
) E ( f `
 x ) ) }
114112, 113syl6eleqr 2542 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( h `  x
) E ( f `
 x ) )  e.  ran  ( x  e.  I  |->  ( ( h `  x ) E ( f `  x ) ) ) )
115109, 114sseldi 3432 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( h `  x
) E ( f `
 x ) )  e.  ( ran  (
x  e.  I  |->  ( ( h `  x
) E ( f `
 x ) ) )  u.  { 0 } ) )
116 supxrub 11617 . . . . . . . . . . . . 13  |-  ( ( ( ran  ( x  e.  I  |->  ( ( h `  x ) E ( f `  x ) ) )  u.  { 0 } )  C_  RR*  /\  (
( h `  x
) E ( f `
 x ) )  e.  ( ran  (
x  e.  I  |->  ( ( h `  x
) E ( f `
 x ) ) )  u.  { 0 } ) )  -> 
( ( h `  x ) E ( f `  x ) )  <_  sup (
( ran  ( x  e.  I  |->  ( ( h `  x ) E ( f `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
117108, 115, 116syl2anc 667 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( h `  x
) E ( f `
 x ) )  <_  sup ( ( ran  ( x  e.  I  |->  ( ( h `  x ) E ( f `  x ) ) )  u.  {
0 } ) , 
RR* ,  <  ) )
118 simp21 1042 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  f  e.  B )
1195, 1, 89, 90, 91, 92, 118, 6, 7, 8prdsdsval3 15395 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  ( h D f )  =  sup ( ( ran  ( x  e.  I  |->  ( ( h `  x ) E ( f `  x ) ) )  u.  {
0 } ) , 
RR* ,  <  ) )
120119adantr 467 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
h D f )  =  sup ( ( ran  ( x  e.  I  |->  ( ( h `
 x ) E ( f `  x
) ) )  u. 
{ 0 } ) ,  RR* ,  <  )
)
121117, 120breqtrrd 4432 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( h `  x
) E ( f `
 x ) )  <_  ( h D f ) )
122 xrrege0 11476 . . . . . . . . . . 11  |-  ( ( ( ( ( h `
 x ) E ( f `  x
) )  e.  RR*  /\  ( h D f )  e.  RR )  /\  ( 0  <_ 
( ( h `  x ) E ( f `  x ) )  /\  ( ( h `  x ) E ( f `  x ) )  <_ 
( h D f ) ) )  -> 
( ( h `  x ) E ( f `  x ) )  e.  RR )
12396, 98, 100, 121, 122syl22anc 1270 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( h `  x
) E ( f `
 x ) )  e.  RR )
124 xmetcl 21358 . . . . . . . . . . . 12  |-  ( ( E  e.  ( *Met `  V )  /\  ( h `  x )  e.  V  /\  ( g `  x
)  e.  V )  ->  ( ( h `
 x ) E ( g `  x
) )  e.  RR* )
12581, 94, 87, 124syl3anc 1269 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( h `  x
) E ( g `
 x ) )  e.  RR* )
126 simp3r 1038 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  ( h D g )  e.  RR )
127126adantr 467 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
h D g )  e.  RR )
128 xmetge0 21371 . . . . . . . . . . . 12  |-  ( ( E  e.  ( *Met `  V )  /\  ( h `  x )  e.  V  /\  ( g `  x
)  e.  V )  ->  0  <_  (
( h `  x
) E ( g `
 x ) ) )
12981, 94, 87, 128syl3anc 1269 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  0  <_  ( ( h `  x ) E ( g `  x ) ) )
130 eqid 2453 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  I  |->  ( ( h `  x ) E ( g `  x ) ) )  =  ( x  e.  I  |->  ( ( h `
 x ) E ( g `  x
) ) )
131125, 130fmptd 6051 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  ( x  e.  I  |->  ( ( h `  x ) E ( g `  x ) ) ) : I --> RR* )
132 frn 5740 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  I  |->  ( ( h `  x
) E ( g `
 x ) ) ) : I --> RR*  ->  ran  ( x  e.  I  |->  ( ( h `  x ) E ( g `  x ) ) )  C_  RR* )
133131, 132syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  ran  ( x  e.  I  |->  ( ( h `  x ) E ( g `  x ) ) ) 
C_  RR* )
134133, 106unssd 3612 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  ( ran  ( x  e.  I  |->  ( ( h `  x ) E ( g `  x ) ) )  u.  {
0 } )  C_  RR* )
135134adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  ( ran  ( x  e.  I  |->  ( ( h `  x ) E ( g `  x ) ) )  u.  {
0 } )  C_  RR* )
136 ssun1 3599 . . . . . . . . . . . . . 14  |-  ran  (
x  e.  I  |->  ( ( h `  x
) E ( g `
 x ) ) )  C_  ( ran  ( x  e.  I  |->  ( ( h `  x ) E ( g `  x ) ) )  u.  {
0 } )
137 ovex 6323 . . . . . . . . . . . . . . . . 17  |-  ( ( h `  x ) E ( g `  x ) )  e. 
_V
138137elabrex 6153 . . . . . . . . . . . . . . . 16  |-  ( x  e.  I  ->  (
( h `  x
) E ( g `
 x ) )  e.  { z  |  E. x  e.  I 
z  =  ( ( h `  x ) E ( g `  x ) ) } )
139138adantl 468 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( h `  x
) E ( g `
 x ) )  e.  { z  |  E. x  e.  I 
z  =  ( ( h `  x ) E ( g `  x ) ) } )
140130rnmpt 5083 . . . . . . . . . . . . . . 15  |-  ran  (
x  e.  I  |->  ( ( h `  x
) E ( g `
 x ) ) )  =  { z  |  E. x  e.  I  z  =  ( ( h `  x
) E ( g `
 x ) ) }
141139, 140syl6eleqr 2542 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( h `  x
) E ( g `
 x ) )  e.  ran  ( x  e.  I  |->  ( ( h `  x ) E ( g `  x ) ) ) )
142136, 141sseldi 3432 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( h `  x
) E ( g `
 x ) )  e.  ( ran  (
x  e.  I  |->  ( ( h `  x
) E ( g `
 x ) ) )  u.  { 0 } ) )
143 supxrub 11617 . . . . . . . . . . . . 13  |-  ( ( ( ran  ( x  e.  I  |->  ( ( h `  x ) E ( g `  x ) ) )  u.  { 0 } )  C_  RR*  /\  (
( h `  x
) E ( g `
 x ) )  e.  ( ran  (
x  e.  I  |->  ( ( h `  x
) E ( g `
 x ) ) )  u.  { 0 } ) )  -> 
( ( h `  x ) E ( g `  x ) )  <_  sup (
( ran  ( x  e.  I  |->  ( ( h `  x ) E ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
144135, 142, 143syl2anc 667 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( h `  x
) E ( g `
 x ) )  <_  sup ( ( ran  ( x  e.  I  |->  ( ( h `  x ) E ( g `  x ) ) )  u.  {
0 } ) , 
RR* ,  <  ) )
145 simp22 1043 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  g  e.  B )
1465, 1, 89, 90, 91, 92, 145, 6, 7, 8prdsdsval3 15395 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  ( h D g )  =  sup ( ( ran  ( x  e.  I  |->  ( ( h `  x ) E ( g `  x ) ) )  u.  {
0 } ) , 
RR* ,  <  ) )
147146adantr 467 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
h D g )  =  sup ( ( ran  ( x  e.  I  |->  ( ( h `
 x ) E ( g `  x
) ) )  u. 
{ 0 } ) ,  RR* ,  <  )
)
148144, 147breqtrrd 4432 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( h `  x
) E ( g `
 x ) )  <_  ( h D g ) )
149 xrrege0 11476 . . . . . . . . . . 11  |-  ( ( ( ( ( h `
 x ) E ( g `  x
) )  e.  RR*  /\  ( h D g )  e.  RR )  /\  ( 0  <_ 
( ( h `  x ) E ( g `  x ) )  /\  ( ( h `  x ) E ( g `  x ) )  <_ 
( h D g ) ) )  -> 
( ( h `  x ) E ( g `  x ) )  e.  RR )
150125, 127, 129, 148, 149syl22anc 1270 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( h `  x
) E ( g `
 x ) )  e.  RR )
151123, 150readdcld 9675 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( ( h `  x ) E ( f `  x ) )  +  ( ( h `  x ) E ( g `  x ) ) )  e.  RR )
15281, 84, 87, 59syl3anc 1269 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  0  <_  ( ( f `  x ) E ( g `  x ) ) )
153 xmettri2 21367 . . . . . . . . . . 11  |-  ( ( E  e.  ( *Met `  V )  /\  ( ( h `
 x )  e.  V  /\  ( f `
 x )  e.  V  /\  ( g `
 x )  e.  V ) )  -> 
( ( f `  x ) E ( g `  x ) )  <_  ( (
( h `  x
) E ( f `
 x ) ) +e ( ( h `  x ) E ( g `  x ) ) ) )
15481, 94, 84, 87, 153syl13anc 1271 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( f `  x
) E ( g `
 x ) )  <_  ( ( ( h `  x ) E ( f `  x ) ) +e ( ( h `
 x ) E ( g `  x
) ) ) )
155 rexadd 11532 . . . . . . . . . . 11  |-  ( ( ( ( h `  x ) E ( f `  x ) )  e.  RR  /\  ( ( h `  x ) E ( g `  x ) )  e.  RR )  ->  ( ( ( h `  x ) E ( f `  x ) ) +e ( ( h `
 x ) E ( g `  x
) ) )  =  ( ( ( h `
 x ) E ( f `  x
) )  +  ( ( h `  x
) E ( g `
 x ) ) ) )
156123, 150, 155syl2anc 667 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( ( h `  x ) E ( f `  x ) ) +e ( ( h `  x
) E ( g `
 x ) ) )  =  ( ( ( h `  x
) E ( f `
 x ) )  +  ( ( h `
 x ) E ( g `  x
) ) ) )
157154, 156breqtrd 4430 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( f `  x
) E ( g `
 x ) )  <_  ( ( ( h `  x ) E ( f `  x ) )  +  ( ( h `  x ) E ( g `  x ) ) ) )
158 xrrege0 11476 . . . . . . . . 9  |-  ( ( ( ( ( f `
 x ) E ( g `  x
) )  e.  RR*  /\  ( ( ( h `
 x ) E ( f `  x
) )  +  ( ( h `  x
) E ( g `
 x ) ) )  e.  RR )  /\  ( 0  <_ 
( ( f `  x ) E ( g `  x ) )  /\  ( ( f `  x ) E ( g `  x ) )  <_ 
( ( ( h `
 x ) E ( f `  x
) )  +  ( ( h `  x
) E ( g `
 x ) ) ) ) )  -> 
( ( f `  x ) E ( g `  x ) )  e.  RR )
15988, 151, 152, 157, 158syl22anc 1270 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( f `  x
) E ( g `
 x ) )  e.  RR )
160 readdcl 9627 . . . . . . . . . 10  |-  ( ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR )  ->  ( ( h D f )  +  ( h D g ) )  e.  RR )
1611603ad2ant3 1032 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  ( (
h D f )  +  ( h D g ) )  e.  RR )
162161adantr 467 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( h D f )  +  ( h D g ) )  e.  RR )
163123, 150, 98, 127, 121, 148le2addd 10239 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( ( h `  x ) E ( f `  x ) )  +  ( ( h `  x ) E ( g `  x ) ) )  <_  ( ( h D f )  +  ( h D g ) ) )
164159, 151, 162, 157, 163letrd 9797 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  ( ( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  /\  x  e.  I )  ->  (
( f `  x
) E ( g `
 x ) )  <_  ( ( h D f )  +  ( h D g ) ) )
165164ralrimiva 2804 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  A. x  e.  I  ( (
f `  x ) E ( g `  x ) )  <_ 
( ( h D f )  +  ( h D g ) ) )
16688ralrimiva 2804 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  A. x  e.  I  ( (
f `  x ) E ( g `  x ) )  e. 
RR* )
167 breq1 4408 . . . . . . . 8  |-  ( z  =  ( ( f `
 x ) E ( g `  x
) )  ->  (
z  <_  ( (
h D f )  +  ( h D g ) )  <->  ( (
f `  x ) E ( g `  x ) )  <_ 
( ( h D f )  +  ( h D g ) ) ) )
16836, 167ralrnmpt 6036 . . . . . . 7  |-  ( A. x  e.  I  (
( f `  x
) E ( g `
 x ) )  e.  RR*  ->  ( A. z  e.  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) ) z  <_  ( (
h D f )  +  ( h D g ) )  <->  A. x  e.  I  ( (
f `  x ) E ( g `  x ) )  <_ 
( ( h D f )  +  ( h D g ) ) ) )
169166, 168syl 17 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  ( A. z  e.  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) ) z  <_  ( (
h D f )  +  ( h D g ) )  <->  A. x  e.  I  ( (
f `  x ) E ( g `  x ) )  <_ 
( ( h D f )  +  ( h D g ) ) ) )
170165, 169mpbird 236 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  A. z  e.  ran  ( x  e.  I  |->  ( ( f `
 x ) E ( g `  x
) ) ) z  <_  ( ( h D f )  +  ( h D g ) ) )
171133ad2ant1 1030 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  D :
( B  X.  B
) --> ( 0 [,] +oo ) )
172171, 92, 118fovrnd 6446 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  ( h D f )  e.  ( 0 [,] +oo ) )
173 elxrge0 11748 . . . . . . . . 9  |-  ( ( h D f )  e.  ( 0 [,] +oo )  <->  ( ( h D f )  e. 
RR*  /\  0  <_  ( h D f ) ) )
174173simprbi 466 . . . . . . . 8  |-  ( ( h D f )  e.  ( 0 [,] +oo )  ->  0  <_ 
( h D f ) )
175172, 174syl 17 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  0  <_  ( h D f ) )
176171, 92, 145fovrnd 6446 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  ( h D g )  e.  ( 0 [,] +oo ) )
177 elxrge0 11748 . . . . . . . . 9  |-  ( ( h D g )  e.  ( 0 [,] +oo )  <->  ( ( h D g )  e. 
RR*  /\  0  <_  ( h D g ) ) )
178177simprbi 466 . . . . . . . 8  |-  ( ( h D g )  e.  ( 0 [,] +oo )  ->  0  <_ 
( h D g ) )
179176, 178syl 17 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  0  <_  ( h D g ) )
18097, 126, 175, 179addge0d 10196 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  0  <_  ( ( h D f )  +  ( h D g ) ) )
181 breq1 4408 . . . . . . 7  |-  ( z  =  0  ->  (
z  <_  ( (
h D f )  +  ( h D g ) )  <->  0  <_  ( ( h D f )  +  ( h D g ) ) ) )
18247, 181ralsn 4012 . . . . . 6  |-  ( A. z  e.  { 0 } z  <_  (
( h D f )  +  ( h D g ) )  <->  0  <_  ( (
h D f )  +  ( h D g ) ) )
183180, 182sylibr 216 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  A. z  e.  { 0 } z  <_  ( ( h D f )  +  ( h D g ) ) )
184 ralunb 3617 . . . . 5  |-  ( A. z  e.  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } ) z  <_  ( ( h D f )  +  ( h D g ) )  <->  ( A. z  e.  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) ) z  <_  ( (
h D f )  +  ( h D g ) )  /\  A. z  e.  { 0 } z  <_  (
( h D f )  +  ( h D g ) ) ) )
185170, 183, 184sylanbrc 671 . . . 4  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  A. z  e.  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } ) z  <_  (
( h D f )  +  ( h D g ) ) )
186433adantr3 1170 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B ) )  -> 
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  C_  RR* )
1871863adant3 1029 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } )  C_  RR* )
188161rexrd 9695 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  ( (
h D f )  +  ( h D g ) )  e. 
RR* )
189 supxrleub 11619 . . . . 5  |-  ( ( ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  C_  RR*  /\  (
( h D f )  +  ( h D g ) )  e.  RR* )  ->  ( sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  <_  (
( h D f )  +  ( h D g ) )  <->  A. z  e.  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } ) z  <_  ( ( h D f )  +  ( h D g ) ) ) )
190187, 188, 189syl2anc 667 . . . 4  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  ( sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  <_  (
( h D f )  +  ( h D g ) )  <->  A. z  e.  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } ) z  <_  ( ( h D f )  +  ( h D g ) ) ) )
191185, 190mpbird 236 . . 3  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  sup (
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  <_  ( ( h D f )  +  ( h D g ) ) )
19280, 191eqbrtrd 4426 . 2  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B  /\  h  e.  B )  /\  (
( h D f )  e.  RR  /\  ( h D g )  e.  RR ) )  ->  ( f D g )  <_ 
( ( h D f )  +  ( h D g ) ) )
1934, 16, 20, 78, 192isxmet2d 21354 1  |-  ( ph  ->  D  e.  ( *Met `  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 986    = wceq 1446    e. wcel 1889   {cab 2439   A.wral 2739   E.wrex 2740   _Vcvv 3047    u. cun 3404    C_ wss 3406   {csn 3970   class class class wbr 4405    |-> cmpt 4464    X. cxp 4835   ran crn 4838    |` cres 4839    Fn wfn 5580   -->wf 5581   ` cfv 5585  (class class class)co 6295   supcsup 7959   RRcr 9543   0cc0 9544    + caddc 9547   +oocpnf 9677   RR*cxr 9679    < clt 9680    <_ cle 9681   +ecxad 11414   [,]cicc 11645   Basecbs 15133   distcds 15211   X_scprds 15356   *Metcxmt 18967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621  ax-pre-sup 9622
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-oadd 7191  df-er 7368  df-map 7479  df-ixp 7528  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-sup 7961  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-5 10678  df-6 10679  df-7 10680  df-8 10681  df-9 10682  df-10 10683  df-n0 10877  df-z 10945  df-dec 11059  df-uz 11167  df-rp 11310  df-xneg 11416  df-xadd 11417  df-xmul 11418  df-icc 11649  df-fz 11792  df-struct 15135  df-ndx 15136  df-slot 15137  df-base 15138  df-plusg 15215  df-mulr 15216  df-sca 15218  df-vsca 15219  df-ip 15220  df-tset 15221  df-ple 15222  df-ds 15224  df-hom 15226  df-cco 15227  df-prds 15358  df-xmet 18975
This theorem is referenced by:  prdsxmet  21396
  Copyright terms: Public domain W3C validator