MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsvsca Structured version   Unicode version

Theorem prdsvsca 14398
Description: Scalar multiplication in a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
prdsbas.p  |-  P  =  ( S X_s R )
prdsbas.s  |-  ( ph  ->  S  e.  V )
prdsbas.r  |-  ( ph  ->  R  e.  W )
prdsbas.b  |-  B  =  ( Base `  P
)
prdsbas.i  |-  ( ph  ->  dom  R  =  I )
prdsvsca.k  |-  K  =  ( Base `  S
)
prdsvsca.m  |-  .x.  =  ( .s `  P )
Assertion
Ref Expression
prdsvsca  |-  ( ph  ->  .x.  =  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) )
Distinct variable groups:    f, g, x, B    f, K, g    ph, f, g, x    f, I, g, x    P, f, g, x    R, f, g, x    S, f, g, x
Allowed substitution hints:    .x. ( x, f, g)    K( x)    V( x, f, g)    W( x, f, g)

Proof of Theorem prdsvsca
Dummy variables  a 
c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3  |-  P  =  ( S X_s R )
2 prdsvsca.k . . 3  |-  K  =  ( Base `  S
)
3 prdsbas.i . . 3  |-  ( ph  ->  dom  R  =  I )
4 prdsbas.s . . . 4  |-  ( ph  ->  S  e.  V )
5 prdsbas.r . . . 4  |-  ( ph  ->  R  e.  W )
6 prdsbas.b . . . 4  |-  B  =  ( Base `  P
)
71, 4, 5, 6, 3prdsbas 14395 . . 3  |-  ( ph  ->  B  =  X_ x  e.  I  ( Base `  ( R `  x
) ) )
8 eqid 2443 . . . 4  |-  ( +g  `  P )  =  ( +g  `  P )
91, 4, 5, 6, 3, 8prdsplusg 14396 . . 3  |-  ( ph  ->  ( +g  `  P
)  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
10 eqid 2443 . . . 4  |-  ( .r
`  P )  =  ( .r `  P
)
111, 4, 5, 6, 3, 10prdsmulr 14397 . . 3  |-  ( ph  ->  ( .r `  P
)  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) )
12 eqidd 2444 . . 3  |-  ( ph  ->  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) )
13 eqidd 2444 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i `  ( R `  x )
) ( g `  x ) ) ) ) ) )
14 eqidd 2444 . . 3  |-  ( ph  ->  ( Xt_ `  ( TopOpen  o.  R ) )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
15 eqidd 2444 . . 3  |-  ( ph  ->  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }  =  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) } )
16 eqidd 2444 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )  =  ( f  e.  B ,  g  e.  B  |->  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) )
17 eqidd 2444 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) )
18 eqidd 2444 . . 3  |-  ( ph  ->  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) )  =  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) )
191, 2, 3, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 4, 5prdsval 14393 . 2  |-  ( ph  ->  P  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  P ) >. ,  <. ( .r `  ndx ) ,  ( .r `  P ) >. }  u.  {
<. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) ) )
20 prdsvsca.m . 2  |-  .x.  =  ( .s `  P )
21 vscaid 14301 . 2  |-  .s  = Slot  ( .s `  ndx )
22 ovssunirn 6117 . . . . . . . . . . 11  |-  ( f ( .s `  ( R `  x )
) ( g `  x ) )  C_  U.
ran  ( .s `  ( R `  x ) )
2321strfvss 14192 . . . . . . . . . . . . 13  |-  ( .s
`  ( R `  x ) )  C_  U.
ran  ( R `  x )
24 fvssunirn 5713 . . . . . . . . . . . . . 14  |-  ( R `
 x )  C_  U.
ran  R
25 rnss 5068 . . . . . . . . . . . . . 14  |-  ( ( R `  x ) 
C_  U. ran  R  ->  ran  ( R `  x
)  C_  ran  U. ran  R )
26 uniss 4112 . . . . . . . . . . . . . 14  |-  ( ran  ( R `  x
)  C_  ran  U. ran  R  ->  U. ran  ( R `
 x )  C_  U.
ran  U. ran  R )
2724, 25, 26mp2b 10 . . . . . . . . . . . . 13  |-  U. ran  ( R `  x ) 
C_  U. ran  U. ran  R
2823, 27sstri 3365 . . . . . . . . . . . 12  |-  ( .s
`  ( R `  x ) )  C_  U.
ran  U. ran  R
29 rnss 5068 . . . . . . . . . . . 12  |-  ( ( .s `  ( R `
 x ) ) 
C_  U. ran  U. ran  R  ->  ran  ( .s `  ( R `  x
) )  C_  ran  U.
ran  U. ran  R )
30 uniss 4112 . . . . . . . . . . . 12  |-  ( ran  ( .s `  ( R `  x )
)  C_  ran  U. ran  U.
ran  R  ->  U. ran  ( .s `  ( R `
 x ) ) 
C_  U. ran  U. ran  U.
ran  R )
3128, 29, 30mp2b 10 . . . . . . . . . . 11  |-  U. ran  ( .s `  ( R `
 x ) ) 
C_  U. ran  U. ran  U.
ran  R
3222, 31sstri 3365 . . . . . . . . . 10  |-  ( f ( .s `  ( R `  x )
) ( g `  x ) )  C_  U.
ran  U. ran  U. ran  R
33 ovex 6116 . . . . . . . . . . 11  |-  ( f ( .s `  ( R `  x )
) ( g `  x ) )  e. 
_V
3433elpw 3866 . . . . . . . . . 10  |-  ( ( f ( .s `  ( R `  x ) ) ( g `  x ) )  e. 
~P U. ran  U. ran  U.
ran  R  <->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) )  C_  U. ran  U.
ran  U. ran  R )
3532, 34mpbir 209 . . . . . . . . 9  |-  ( f ( .s `  ( R `  x )
) ( g `  x ) )  e. 
~P U. ran  U. ran  U.
ran  R
3635a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  (
f ( .s `  ( R `  x ) ) ( g `  x ) )  e. 
~P U. ran  U. ran  U.
ran  R )
37 eqid 2443 . . . . . . . 8  |-  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) )  =  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) )
3836, 37fmptd 5867 . . . . . . 7  |-  ( ph  ->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) : I --> ~P U. ran  U. ran  U. ran  R )
39 rnexg 6510 . . . . . . . . . . 11  |-  ( R  e.  W  ->  ran  R  e.  _V )
40 uniexg 6377 . . . . . . . . . . 11  |-  ( ran 
R  e.  _V  ->  U.
ran  R  e.  _V )
415, 39, 403syl 20 . . . . . . . . . 10  |-  ( ph  ->  U. ran  R  e. 
_V )
42 rnexg 6510 . . . . . . . . . 10  |-  ( U. ran  R  e.  _V  ->  ran  U. ran  R  e.  _V )
43 uniexg 6377 . . . . . . . . . 10  |-  ( ran  U. ran  R  e.  _V  ->  U. ran  U. ran  R  e.  _V )
4441, 42, 433syl 20 . . . . . . . . 9  |-  ( ph  ->  U. ran  U. ran  R  e.  _V )
45 rnexg 6510 . . . . . . . . 9  |-  ( U. ran  U. ran  R  e. 
_V  ->  ran  U. ran  U. ran  R  e.  _V )
46 uniexg 6377 . . . . . . . . 9  |-  ( ran  U. ran  U. ran  R  e.  _V  ->  U. ran  U. ran  U. ran  R  e. 
_V )
47 pwexg 4476 . . . . . . . . 9  |-  ( U. ran  U. ran  U. ran  R  e.  _V  ->  ~P U.
ran  U. ran  U. ran  R  e.  _V )
4844, 45, 46, 474syl 21 . . . . . . . 8  |-  ( ph  ->  ~P U. ran  U. ran  U. ran  R  e. 
_V )
49 dmexg 6509 . . . . . . . . . 10  |-  ( R  e.  W  ->  dom  R  e.  _V )
505, 49syl 16 . . . . . . . . 9  |-  ( ph  ->  dom  R  e.  _V )
513, 50eqeltrrd 2518 . . . . . . . 8  |-  ( ph  ->  I  e.  _V )
52 elmapg 7227 . . . . . . . 8  |-  ( ( ~P U. ran  U. ran  U. ran  R  e. 
_V  /\  I  e.  _V )  ->  ( ( x  e.  I  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) )  e.  ( ~P U. ran  U. ran  U. ran  R  ^m  I )  <->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) : I --> ~P U. ran  U. ran  U. ran  R ) )
5348, 51, 52syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) )  e.  ( ~P U. ran  U.
ran  U. ran  R  ^m  I )  <->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) : I --> ~P U. ran  U. ran  U. ran  R ) )
5438, 53mpbird 232 . . . . . 6  |-  ( ph  ->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) )  e.  ( ~P U. ran  U. ran  U. ran  R  ^m  I ) )
5554ralrimivw 2800 . . . . 5  |-  ( ph  ->  A. g  e.  B  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) )  e.  ( ~P U. ran  U. ran  U. ran  R  ^m  I ) )
5655ralrimivw 2800 . . . 4  |-  ( ph  ->  A. f  e.  K  A. g  e.  B  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) )  e.  ( ~P U. ran  U. ran  U. ran  R  ^m  I ) )
57 eqid 2443 . . . . 5  |-  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) )  =  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) )
5857fmpt2 6641 . . . 4  |-  ( A. f  e.  K  A. g  e.  B  (
x  e.  I  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) )  e.  ( ~P U. ran  U. ran  U. ran  R  ^m  I )  <->  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) ) : ( K  X.  B ) --> ( ~P
U. ran  U. ran  U. ran  R  ^m  I ) )
5956, 58sylib 196 . . 3  |-  ( ph  ->  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) : ( K  X.  B
) --> ( ~P U. ran  U. ran  U. ran  R  ^m  I ) )
60 fvex 5701 . . . . . 6  |-  ( Base `  S )  e.  _V
612, 60eqeltri 2513 . . . . 5  |-  K  e. 
_V
62 fvex 5701 . . . . . 6  |-  ( Base `  P )  e.  _V
636, 62eqeltri 2513 . . . . 5  |-  B  e. 
_V
6461, 63xpex 6508 . . . 4  |-  ( K  X.  B )  e. 
_V
65 ovex 6116 . . . 4  |-  ( ~P
U. ran  U. ran  U. ran  R  ^m  I )  e.  _V
66 fex2 6532 . . . 4  |-  ( ( ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) : ( K  X.  B
) --> ( ~P U. ran  U. ran  U. ran  R  ^m  I )  /\  ( K  X.  B
)  e.  _V  /\  ( ~P U. ran  U. ran  U. ran  R  ^m  I )  e.  _V )  ->  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) )  e.  _V )
6764, 65, 66mp3an23 1306 . . 3  |-  ( ( f  e.  K , 
g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) : ( K  X.  B ) --> ( ~P U. ran  U. ran  U. ran  R  ^m  I )  ->  (
f  e.  K , 
g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) )  e.  _V )
6859, 67syl 16 . 2  |-  ( ph  ->  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) )  e. 
_V )
69 snsstp2 4025 . . . 4  |-  { <. ( .s `  ndx ) ,  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  { <. (Scalar ` 
ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. }
70 ssun2 3520 . . . 4  |-  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. }  C_  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  P ) >. ,  <. ( .r `  ndx ) ,  ( .r `  P ) >. }  u.  {
<. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )
7169, 70sstri 3365 . . 3  |-  { <. ( .s `  ndx ) ,  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  P ) >. ,  <. ( .r `  ndx ) ,  ( .r `  P ) >. }  u.  {
<. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )
72 ssun1 3519 . . 3  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  P ) >. ,  <. ( .r `  ndx ) ,  ( .r `  P ) >. }  u.  {
<. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  C_  (
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  P
) >. ,  <. ( .r `  ndx ) ,  ( .r `  P
) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) )
7371, 72sstri 3365 . 2  |-  { <. ( .s `  ndx ) ,  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  P ) >. ,  <. ( .r `  ndx ) ,  ( .r `  P ) >. }  u.  {
<. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) )
7419, 20, 21, 68, 73prdsvallem 14392 1  |-  ( ph  ->  .x.  =  ( f  e.  K ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715   _Vcvv 2972    u. cun 3326    C_ wss 3328   ~Pcpw 3860   {csn 3877   {cpr 3879   {ctp 3881   <.cop 3883   U.cuni 4091   class class class wbr 4292   {copab 4349    e. cmpt 4350    X. cxp 4838   dom cdm 4840   ran crn 4841    o. ccom 4844   -->wf 5414   ` cfv 5418  (class class class)co 6091    e. cmpt2 6093   1stc1st 6575   2ndc2nd 6576    ^m cmap 7214   X_cixp 7263   supcsup 7690   0cc0 9282   RR*cxr 9417    < clt 9418   ndxcnx 14171   Basecbs 14174   +g cplusg 14238   .rcmulr 14239  Scalarcsca 14241   .scvsca 14242   .icip 14243  TopSetcts 14244   lecple 14245   distcds 14247   Hom chom 14249  compcco 14250   TopOpenctopn 14360   Xt_cpt 14377    gsumg cgsu 14379   X_scprds 14384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-map 7216  df-ixp 7264  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-sup 7691  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-fz 11438  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-plusg 14251  df-mulr 14252  df-sca 14254  df-vsca 14255  df-ip 14256  df-tset 14257  df-ple 14258  df-ds 14260  df-hom 14262  df-cco 14263  df-prds 14386
This theorem is referenced by:  prdsle  14400  prdsds  14402  prdstset  14404  prdshom  14405  prdsco  14406  prdsvscaval  14417
  Copyright terms: Public domain W3C validator