MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsvalstr Structured version   Unicode version

Theorem prdsvalstr 14373
Description: Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Assertion
Ref Expression
prdsvalstr  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .xb  >. } ) ) Struct  <. 1 , ; 1 5 >.

Proof of Theorem prdsvalstr
StepHypRef Expression
1 unass 3501 . 2  |-  ( ( ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u. 
{ <. (TopSet `  ndx ) ,  O >. , 
<. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. } )  u.  { <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .xb  >. } )  =  ( ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .xb  >. } ) )
2 eqid 2433 . . . 4  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u. 
{ <. (TopSet `  ndx ) ,  O >. , 
<. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. } )  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u. 
{ <. (TopSet `  ndx ) ,  O >. , 
<. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. } )
32imasvalstr 14372 . . 3  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u. 
{ <. (TopSet `  ndx ) ,  O >. , 
<. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. } ) Struct  <. 1 , ; 1 2 >.
4 1nn0 10582 . . . . 5  |-  1  e.  NN0
5 4nn 10468 . . . . 5  |-  4  e.  NN
64, 5decnncl 10755 . . . 4  |- ; 1 4  e.  NN
7 homndx 14335 . . . 4  |-  ( Hom  `  ndx )  = ; 1 4
8 4nn0 10585 . . . . 5  |-  4  e.  NN0
9 5nn 10469 . . . . 5  |-  5  e.  NN
10 4lt5 10481 . . . . 5  |-  4  <  5
114, 8, 9, 10declt 10763 . . . 4  |- ; 1 4  < ; 1 5
124, 9decnncl 10755 . . . 4  |- ; 1 5  e.  NN
13 ccondx 14337 . . . 4  |-  (comp `  ndx )  = ; 1 5
146, 7, 11, 12, 13strle2 14252 . . 3  |-  { <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .xb  >. } Struct  <.; 1 4 , ; 1 5 >.
15 2nn0 10583 . . . 4  |-  2  e.  NN0
16 2lt4 10479 . . . 4  |-  2  <  4
174, 15, 5, 16declt 10763 . . 3  |- ; 1 2  < ; 1 4
183, 14, 17strleun 14250 . 2  |-  ( ( ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u. 
{ <. (TopSet `  ndx ) ,  O >. , 
<. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. } )  u.  { <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .xb  >. } ) Struct  <. 1 , ; 1
5 >.
191, 18eqbrtrri 4301 1  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .xb  >. } ) ) Struct  <. 1 , ; 1 5 >.
Colors of variables: wff setvar class
Syntax hints:    u. cun 3314   {cpr 3867   {ctp 3869   <.cop 3871   class class class wbr 4280   ` cfv 5406   1c1 9270   2c2 10358   4c4 10360   5c5 10361  ;cdc 10742   Struct cstr 14152   ndxcnx 14153   Basecbs 14156   +g cplusg 14220   .rcmulr 14221  Scalarcsca 14223   .scvsca 14224   .icip 14225  TopSetcts 14226   lecple 14227   distcds 14229   Hom chom 14231  compcco 14232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-nn 10310  df-2 10367  df-3 10368  df-4 10369  df-5 10370  df-6 10371  df-7 10372  df-8 10373  df-9 10374  df-10 10375  df-n0 10567  df-z 10634  df-dec 10743  df-uz 10849  df-fz 11424  df-struct 14158  df-ndx 14159  df-slot 14160  df-base 14161  df-plusg 14233  df-mulr 14234  df-sca 14236  df-vsca 14237  df-ip 14238  df-tset 14239  df-ple 14240  df-ds 14242  df-hom 14244  df-cco 14245
This theorem is referenced by:  prdsvallem  14374
  Copyright terms: Public domain W3C validator