MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsvallem Structured version   Unicode version

Theorem prdsvallem 14705
Description: Lemma for prdsbas 14708 and similar theorems. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
prdsvallem.u  |-  ( ph  ->  U  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .xb  >. } ) ) )
prdsvallem.1  |-  A  =  ( E `  U
)
prdsvallem.2  |-  E  = Slot  ( E `  ndx )
prdsvallem.3  |-  ( ph  ->  T  e.  _V )
prdsvallem.4  |-  { <. ( E `  ndx ) ,  T >. }  C_  (
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .xb  >. } ) )
Assertion
Ref Expression
prdsvallem  |-  ( ph  ->  A  =  T )

Proof of Theorem prdsvallem
StepHypRef Expression
1 prdsvallem.u . 2  |-  ( ph  ->  U  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .xb  >. } ) ) )
2 prdsvalstr 14704 . 2  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .xb  >. } ) ) Struct  <. 1 , ; 1 5 >.
3 prdsvallem.2 . 2  |-  E  = Slot  ( E `  ndx )
4 prdsvallem.4 . 2  |-  { <. ( E `  ndx ) ,  T >. }  C_  (
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) , 
.,  >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  O >. ,  <. ( le `  ndx ) ,  L >. , 
<. ( dist `  ndx ) ,  D >. }  u.  { <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .xb  >. } ) )
5 prdsvallem.3 . 2  |-  ( ph  ->  T  e.  _V )
6 prdsvallem.1 . 2  |-  A  =  ( E `  U
)
71, 2, 3, 4, 5, 6strfv3 14521 1  |-  ( ph  ->  A  =  T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1379    e. wcel 1767   _Vcvv 3113    u. cun 3474    C_ wss 3476   {csn 4027   {cpr 4029   {ctp 4031   <.cop 4033   ` cfv 5586   1c1 9489   5c5 10584  ;cdc 10972   ndxcnx 14483  Slot cslot 14485   Basecbs 14486   +g cplusg 14551   .rcmulr 14552  Scalarcsca 14554   .scvsca 14555   .icip 14556  TopSetcts 14557   lecple 14558   distcds 14560   Hom chom 14562  compcco 14563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-fz 11669  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-plusg 14564  df-mulr 14565  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-hom 14575  df-cco 14576
This theorem is referenced by:  prdssca  14707  prdsbas  14708  prdsplusg  14709  prdsmulr  14710  prdsvsca  14711  prdsip  14712  prdsle  14713  prdsds  14715  prdstset  14717  prdshom  14718  prdsco  14719
  Copyright terms: Public domain W3C validator