Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prdstotbnd Structured version   Visualization version   Unicode version

Theorem prdstotbnd 32190
Description: The product metric over finite index set is totally bounded if all the factors are totally bounded. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
prdsbnd.y  |-  Y  =  ( S X_s R )
prdsbnd.b  |-  B  =  ( Base `  Y
)
prdsbnd.v  |-  V  =  ( Base `  ( R `  x )
)
prdsbnd.e  |-  E  =  ( ( dist `  ( R `  x )
)  |`  ( V  X.  V ) )
prdsbnd.d  |-  D  =  ( dist `  Y
)
prdsbnd.s  |-  ( ph  ->  S  e.  W )
prdsbnd.i  |-  ( ph  ->  I  e.  Fin )
prdsbnd.r  |-  ( ph  ->  R  Fn  I )
prdstotbnd.m  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( TotBnd `  V )
)
Assertion
Ref Expression
prdstotbnd  |-  ( ph  ->  D  e.  ( TotBnd `  B ) )
Distinct variable groups:    x, R    x, B    ph, x    x, I    x, S    x, Y
Allowed substitution hints:    D( x)    E( x)    V( x)    W( x)

Proof of Theorem prdstotbnd
Dummy variables  z 
r  f  g  v  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2471 . . . 4  |-  ( S
X_s ( x  e.  I  |->  ( R `  x
) ) )  =  ( S X_s ( x  e.  I  |->  ( R `  x
) ) )
2 eqid 2471 . . . 4  |-  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )
3 prdsbnd.v . . . 4  |-  V  =  ( Base `  ( R `  x )
)
4 prdsbnd.e . . . 4  |-  E  =  ( ( dist `  ( R `  x )
)  |`  ( V  X.  V ) )
5 eqid 2471 . . . 4  |-  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )  =  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )
6 prdsbnd.s . . . 4  |-  ( ph  ->  S  e.  W )
7 prdsbnd.i . . . 4  |-  ( ph  ->  I  e.  Fin )
8 fvex 5889 . . . . 5  |-  ( R `
 x )  e. 
_V
98a1i 11 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ( R `  x )  e.  _V )
10 prdstotbnd.m . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( TotBnd `  V )
)
11 totbndmet 32168 . . . . 5  |-  ( E  e.  ( TotBnd `  V
)  ->  E  e.  ( Met `  V ) )
1210, 11syl 17 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( Met `  V
) )
131, 2, 3, 4, 5, 6, 7, 9, 12prdsmet 21463 . . 3  |-  ( ph  ->  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )  e.  ( Met `  ( Base `  ( S X_s (
x  e.  I  |->  ( R `  x ) ) ) ) ) )
14 prdsbnd.d . . . 4  |-  D  =  ( dist `  Y
)
15 prdsbnd.y . . . . . 6  |-  Y  =  ( S X_s R )
16 prdsbnd.r . . . . . . . 8  |-  ( ph  ->  R  Fn  I )
17 dffn5 5924 . . . . . . . 8  |-  ( R  Fn  I  <->  R  =  ( x  e.  I  |->  ( R `  x
) ) )
1816, 17sylib 201 . . . . . . 7  |-  ( ph  ->  R  =  ( x  e.  I  |->  ( R `
 x ) ) )
1918oveq2d 6324 . . . . . 6  |-  ( ph  ->  ( S X_s R )  =  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )
2015, 19syl5eq 2517 . . . . 5  |-  ( ph  ->  Y  =  ( S
X_s ( x  e.  I  |->  ( R `  x
) ) ) )
2120fveq2d 5883 . . . 4  |-  ( ph  ->  ( dist `  Y
)  =  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
2214, 21syl5eq 2517 . . 3  |-  ( ph  ->  D  =  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
23 prdsbnd.b . . . . 5  |-  B  =  ( Base `  Y
)
2420fveq2d 5883 . . . . 5  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
2523, 24syl5eq 2517 . . . 4  |-  ( ph  ->  B  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
2625fveq2d 5883 . . 3  |-  ( ph  ->  ( Met `  B
)  =  ( Met `  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) ) )
2713, 22, 263eltr4d 2564 . 2  |-  ( ph  ->  D  e.  ( Met `  B ) )
287adantr 472 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  I  e.  Fin )
29 istotbnd3 32167 . . . . . . . . . . 11  |-  ( E  e.  ( TotBnd `  V
)  <->  ( E  e.  ( Met `  V
)  /\  A. r  e.  RR+  E. w  e.  ( ~P V  i^i  Fin ) U_ z  e.  w  ( z (
ball `  E )
r )  =  V ) )
3029simprbi 471 . . . . . . . . . 10  |-  ( E  e.  ( TotBnd `  V
)  ->  A. r  e.  RR+  E. w  e.  ( ~P V  i^i  Fin ) U_ z  e.  w  ( z (
ball `  E )
r )  =  V )
3110, 30syl 17 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  A. r  e.  RR+  E. w  e.  ( ~P V  i^i  Fin ) U_ z  e.  w  ( z (
ball `  E )
r )  =  V )
3231r19.21bi 2776 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  I )  /\  r  e.  RR+ )  ->  E. w  e.  ( ~P V  i^i  Fin ) U_ z  e.  w  ( z (
ball `  E )
r )  =  V )
33 df-rex 2762 . . . . . . . . 9  |-  ( E. w  e.  ( ~P V  i^i  Fin ) U_ z  e.  w  ( z ( ball `  E ) r )  =  V  <->  E. w
( w  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  w  ( z (
ball `  E )
r )  =  V ) )
34 rexv 3048 . . . . . . . . 9  |-  ( E. w  e.  _V  (
w  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  w  ( z ( ball `  E ) r )  =  V )  <->  E. w
( w  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  w  ( z (
ball `  E )
r )  =  V ) )
3533, 34bitr4i 260 . . . . . . . 8  |-  ( E. w  e.  ( ~P V  i^i  Fin ) U_ z  e.  w  ( z ( ball `  E ) r )  =  V  <->  E. w  e.  _V  ( w  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  w  ( z
( ball `  E )
r )  =  V ) )
3632, 35sylib 201 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  I )  /\  r  e.  RR+ )  ->  E. w  e.  _V  ( w  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  w  ( z
( ball `  E )
r )  =  V ) )
3736an32s 821 . . . . . 6  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  x  e.  I )  ->  E. w  e.  _V  ( w  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  w  ( z
( ball `  E )
r )  =  V ) )
3837ralrimiva 2809 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  A. x  e.  I  E. w  e.  _V  ( w  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  w  ( z
( ball `  E )
r )  =  V ) )
39 eleq1 2537 . . . . . . 7  |-  ( w  =  ( f `  x )  ->  (
w  e.  ( ~P V  i^i  Fin )  <->  ( f `  x )  e.  ( ~P V  i^i  Fin ) ) )
40 iuneq1 4283 . . . . . . . 8  |-  ( w  =  ( f `  x )  ->  U_ z  e.  w  ( z
( ball `  E )
r )  =  U_ z  e.  ( f `  x ) ( z ( ball `  E
) r ) )
4140eqeq1d 2473 . . . . . . 7  |-  ( w  =  ( f `  x )  ->  ( U_ z  e.  w  ( z ( ball `  E ) r )  =  V  <->  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) )
4239, 41anbi12d 725 . . . . . 6  |-  ( w  =  ( f `  x )  ->  (
( w  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  w  ( z (
ball `  E )
r )  =  V )  <->  ( ( f `
 x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )
4342ac6sfi 7833 . . . . 5  |-  ( ( I  e.  Fin  /\  A. x  e.  I  E. w  e.  _V  (
w  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  w  ( z ( ball `  E ) r )  =  V ) )  ->  E. f ( f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )
4428, 38, 43syl2anc 673 . . . 4  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. f
( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )
45 elfpw 7894 . . . . . . . . . . . 12  |-  ( ( f `  x )  e.  ( ~P V  i^i  Fin )  <->  ( (
f `  x )  C_  V  /\  ( f `
 x )  e. 
Fin ) )
4645simplbi 467 . . . . . . . . . . 11  |-  ( ( f `  x )  e.  ( ~P V  i^i  Fin )  ->  (
f `  x )  C_  V )
4746adantr 472 . . . . . . . . . 10  |-  ( ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V )  -> 
( f `  x
)  C_  V )
4847ralimi 2796 . . . . . . . . 9  |-  ( A. x  e.  I  (
( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V )  ->  A. x  e.  I 
( f `  x
)  C_  V )
4948ad2antll 743 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  A. x  e.  I  ( f `  x )  C_  V
)
50 ss2ixp 7553 . . . . . . . 8  |-  ( A. x  e.  I  (
f `  x )  C_  V  ->  X_ x  e.  I  ( f `  x )  C_  X_ x  e.  I  V )
5149, 50syl 17 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  X_ x  e.  I  ( f `  x )  C_  X_ x  e.  I  V )
52 fnfi 7867 . . . . . . . . . . 11  |-  ( ( R  Fn  I  /\  I  e.  Fin )  ->  R  e.  Fin )
5316, 7, 52syl2anc 673 . . . . . . . . . 10  |-  ( ph  ->  R  e.  Fin )
54 fndm 5685 . . . . . . . . . . 11  |-  ( R  Fn  I  ->  dom  R  =  I )
5516, 54syl 17 . . . . . . . . . 10  |-  ( ph  ->  dom  R  =  I )
5615, 6, 53, 23, 55prdsbas 15433 . . . . . . . . 9  |-  ( ph  ->  B  =  X_ x  e.  I  ( Base `  ( R `  x
) ) )
573rgenw 2768 . . . . . . . . . 10  |-  A. x  e.  I  V  =  ( Base `  ( R `  x ) )
58 ixpeq2 7554 . . . . . . . . . 10  |-  ( A. x  e.  I  V  =  ( Base `  ( R `  x )
)  ->  X_ x  e.  I  V  =  X_ x  e.  I  ( Base `  ( R `  x ) ) )
5957, 58ax-mp 5 . . . . . . . . 9  |-  X_ x  e.  I  V  =  X_ x  e.  I  (
Base `  ( R `  x ) )
6056, 59syl6eqr 2523 . . . . . . . 8  |-  ( ph  ->  B  =  X_ x  e.  I  V )
6160ad2antrr 740 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  B  =  X_ x  e.  I  V )
6251, 61sseqtr4d 3455 . . . . . 6  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  X_ x  e.  I  ( f `  x )  C_  B
)
6328adantr 472 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  I  e.  Fin )
6445simprbi 471 . . . . . . . . . 10  |-  ( ( f `  x )  e.  ( ~P V  i^i  Fin )  ->  (
f `  x )  e.  Fin )
6564adantr 472 . . . . . . . . 9  |-  ( ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V )  -> 
( f `  x
)  e.  Fin )
6665ralimi 2796 . . . . . . . 8  |-  ( A. x  e.  I  (
( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V )  ->  A. x  e.  I 
( f `  x
)  e.  Fin )
6766ad2antll 743 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  A. x  e.  I  ( f `  x )  e.  Fin )
68 ixpfi 7889 . . . . . . 7  |-  ( ( I  e.  Fin  /\  A. x  e.  I  ( f `  x )  e.  Fin )  ->  X_ x  e.  I  ( f `  x )  e.  Fin )
6963, 67, 68syl2anc 673 . . . . . 6  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  X_ x  e.  I  ( f `  x )  e.  Fin )
70 elfpw 7894 . . . . . 6  |-  ( X_ x  e.  I  (
f `  x )  e.  ( ~P B  i^i  Fin )  <->  ( X_ x  e.  I  ( f `  x )  C_  B  /\  X_ x  e.  I 
( f `  x
)  e.  Fin )
)
7162, 69, 70sylanbrc 677 . . . . 5  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  X_ x  e.  I  ( f `  x )  e.  ( ~P B  i^i  Fin ) )
72 metxmet 21427 . . . . . . . . . . 11  |-  ( D  e.  ( Met `  B
)  ->  D  e.  ( *Met `  B
) )
7327, 72syl 17 . . . . . . . . . 10  |-  ( ph  ->  D  e.  ( *Met `  B ) )
74 rpxr 11332 . . . . . . . . . 10  |-  ( r  e.  RR+  ->  r  e. 
RR* )
75 blssm 21511 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  B )  /\  y  e.  B  /\  r  e.  RR* )  ->  ( y ( ball `  D ) r ) 
C_  B )
76753expa 1231 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( *Met `  B
)  /\  y  e.  B )  /\  r  e.  RR* )  ->  (
y ( ball `  D
) r )  C_  B )
7776an32s 821 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  B
)  /\  r  e.  RR* )  /\  y  e.  B )  ->  (
y ( ball `  D
) r )  C_  B )
7877ralrimiva 2809 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  B )  /\  r  e.  RR* )  ->  A. y  e.  B  ( y ( ball `  D ) r ) 
C_  B )
7973, 74, 78syl2an 485 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  RR+ )  ->  A. y  e.  B  ( y
( ball `  D )
r )  C_  B
)
8079adantr 472 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  A. y  e.  B  ( y
( ball `  D )
r )  C_  B
)
81 ssralv 3479 . . . . . . . 8  |-  ( X_ x  e.  I  (
f `  x )  C_  B  ->  ( A. y  e.  B  (
y ( ball `  D
) r )  C_  B  ->  A. y  e.  X_  x  e.  I  (
f `  x )
( y ( ball `  D ) r ) 
C_  B ) )
8262, 80, 81sylc 61 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  A. y  e.  X_  x  e.  I 
( f `  x
) ( y (
ball `  D )
r )  C_  B
)
83 iunss 4310 . . . . . . 7  |-  ( U_ y  e.  X_  x  e.  I  ( f `  x ) ( y ( ball `  D
) r )  C_  B 
<-> 
A. y  e.  X_  x  e.  I  (
f `  x )
( y ( ball `  D ) r ) 
C_  B )
8482, 83sylibr 217 . . . . . 6  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  U_ y  e.  X_  x  e.  I 
( f `  x
) ( y (
ball `  D )
r )  C_  B
)
8563adantr 472 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  ->  I  e.  Fin )
8661eleq2d 2534 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  ( g  e.  B  <->  g  e.  X_ x  e.  I  V
) )
87 vex 3034 . . . . . . . . . . . . . . . 16  |-  g  e. 
_V
8887elixp 7547 . . . . . . . . . . . . . . 15  |-  ( g  e.  X_ x  e.  I  V 
<->  ( g  Fn  I  /\  A. x  e.  I 
( g `  x
)  e.  V ) )
8988simprbi 471 . . . . . . . . . . . . . 14  |-  ( g  e.  X_ x  e.  I  V  ->  A. x  e.  I 
( g `  x
)  e.  V )
90 df-rex 2762 . . . . . . . . . . . . . . . . . . . 20  |-  ( E. z  e.  ( f `
 x ) ( g `  x )  e.  ( z (
ball `  E )
r )  <->  E. z
( z  e.  ( f `  x )  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) ) )
91 eliun 4274 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( g `  x )  e.  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  <->  E. z  e.  ( f `  x
) ( g `  x )  e.  ( z ( ball `  E
) r ) )
92 rexv 3048 . . . . . . . . . . . . . . . . . . . 20  |-  ( E. z  e.  _V  (
z  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( z ( ball `  E
) r ) )  <->  E. z ( z  e.  ( f `  x
)  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) ) )
9390, 91, 923bitr4i 285 . . . . . . . . . . . . . . . . . . 19  |-  ( ( g `  x )  e.  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  <->  E. z  e.  _V  ( z  e.  ( f `  x
)  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) ) )
94 eleq2 2538 . . . . . . . . . . . . . . . . . . 19  |-  ( U_ z  e.  ( f `  x ) ( z ( ball `  E
) r )  =  V  ->  ( (
g `  x )  e.  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  <-> 
( g `  x
)  e.  V ) )
9593, 94syl5bbr 267 . . . . . . . . . . . . . . . . . 18  |-  ( U_ z  e.  ( f `  x ) ( z ( ball `  E
) r )  =  V  ->  ( E. z  e.  _V  (
z  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( z ( ball `  E
) r ) )  <-> 
( g `  x
)  e.  V ) )
9695biimprd 231 . . . . . . . . . . . . . . . . 17  |-  ( U_ z  e.  ( f `  x ) ( z ( ball `  E
) r )  =  V  ->  ( (
g `  x )  e.  V  ->  E. z  e.  _V  ( z  e.  ( f `  x
)  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) ) ) )
9796adantl 473 . . . . . . . . . . . . . . . 16  |-  ( ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V )  -> 
( ( g `  x )  e.  V  ->  E. z  e.  _V  ( z  e.  ( f `  x )  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) ) ) )
9897ral2imi 2791 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  I  (
( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V )  -> 
( A. x  e.  I  ( g `  x )  e.  V  ->  A. x  e.  I  E. z  e.  _V  ( z  e.  ( f `  x )  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) ) ) )
9998ad2antll 743 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  ( A. x  e.  I  (
g `  x )  e.  V  ->  A. x  e.  I  E. z  e.  _V  ( z  e.  ( f `  x
)  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) ) ) )
10089, 99syl5 32 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  ( g  e.  X_ x  e.  I  V  ->  A. x  e.  I  E. z  e.  _V  ( z  e.  ( f `  x )  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) ) ) )
10186, 100sylbid 223 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  ( g  e.  B  ->  A. x  e.  I  E. z  e.  _V  ( z  e.  ( f `  x
)  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) ) ) )
102101imp 436 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  ->  A. x  e.  I  E. z  e.  _V  ( z  e.  ( f `  x )  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) ) )
103 eleq1 2537 . . . . . . . . . . . . 13  |-  ( z  =  ( y `  x )  ->  (
z  e.  ( f `
 x )  <->  ( y `  x )  e.  ( f `  x ) ) )
104 oveq1 6315 . . . . . . . . . . . . . 14  |-  ( z  =  ( y `  x )  ->  (
z ( ball `  E
) r )  =  ( ( y `  x ) ( ball `  E ) r ) )
105104eleq2d 2534 . . . . . . . . . . . . 13  |-  ( z  =  ( y `  x )  ->  (
( g `  x
)  e.  ( z ( ball `  E
) r )  <->  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) )
106103, 105anbi12d 725 . . . . . . . . . . . 12  |-  ( z  =  ( y `  x )  ->  (
( z  e.  ( f `  x )  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) )  <-> 
( ( y `  x )  e.  ( f `  x )  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )
107106ac6sfi 7833 . . . . . . . . . . 11  |-  ( ( I  e.  Fin  /\  A. x  e.  I  E. z  e.  _V  (
z  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( z ( ball `  E
) r ) ) )  ->  E. y
( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )
10885, 102, 107syl2anc 673 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  ->  E. y ( y : I --> _V  /\  A. x  e.  I  ( ( y `  x
)  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) ) ) )
109 ffn 5739 . . . . . . . . . . . . . . . . 17  |-  ( y : I --> _V  ->  y  Fn  I )
110 simpl 464 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y `  x
)  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) )  ->  ( y `  x )  e.  ( f `  x ) )
111110ralimi 2796 . . . . . . . . . . . . . . . . 17  |-  ( A. x  e.  I  (
( y `  x
)  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) )  ->  A. x  e.  I 
( y `  x
)  e.  ( f `
 x ) )
112109, 111anim12i 576 . . . . . . . . . . . . . . . 16  |-  ( ( y : I --> _V  /\  A. x  e.  I  ( ( y `  x
)  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) ) )  ->  ( y  Fn  I  /\  A. x  e.  I  ( y `  x )  e.  ( f `  x ) ) )
113 vex 3034 . . . . . . . . . . . . . . . . 17  |-  y  e. 
_V
114113elixp 7547 . . . . . . . . . . . . . . . 16  |-  ( y  e.  X_ x  e.  I 
( f `  x
)  <->  ( y  Fn  I  /\  A. x  e.  I  ( y `  x )  e.  ( f `  x ) ) )
115112, 114sylibr 217 . . . . . . . . . . . . . . 15  |-  ( ( y : I --> _V  /\  A. x  e.  I  ( ( y `  x
)  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) ) )  ->  y  e.  X_ x  e.  I  ( f `  x ) )
116115adantl 473 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  y  e.  X_ x  e.  I 
( f `  x
) )
11786biimpa 492 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  ->  g  e.  X_ x  e.  I  V )
118 ixpfn 7546 . . . . . . . . . . . . . . . . . 18  |-  ( g  e.  X_ x  e.  I  V  ->  g  Fn  I
)
119117, 118syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  ->  g  Fn  I )
120119adantr 472 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  g  Fn  I )
121 simpr 468 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y `  x
)  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) )  ->  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) )
122121ralimi 2796 . . . . . . . . . . . . . . . . 17  |-  ( A. x  e.  I  (
( y `  x
)  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) )  ->  A. x  e.  I 
( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) )
123122ad2antll 743 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  A. x  e.  I  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) )
12487elixp 7547 . . . . . . . . . . . . . . . 16  |-  ( g  e.  X_ x  e.  I 
( ( y `  x ) ( ball `  E ) r )  <-> 
( g  Fn  I  /\  A. x  e.  I 
( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) ) )
125120, 123, 124sylanbrc 677 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  g  e.  X_ x  e.  I 
( ( y `  x ) ( ball `  E ) r ) )
126 simp-4l 784 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  ph )
12751ad2antrr 740 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  X_ x  e.  I  ( f `  x )  C_  X_ x  e.  I  V )
128127, 116sseldd 3419 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  y  e.  X_ x  e.  I  V )
129126, 60syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  B  =  X_ x  e.  I  V )
130128, 129eleqtrrd 2552 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  y  e.  B )
131 simp-4r 785 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  r  e.  RR+ )
132 fveq2 5879 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  =  x  ->  ( R `  y )  =  ( R `  x ) )
133132cbvmptv 4488 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  I  |->  ( R `
 y ) )  =  ( x  e.  I  |->  ( R `  x ) )
134133oveq2i 6319 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( S
X_s ( y  e.  I  |->  ( R `  y
) ) )  =  ( S X_s ( x  e.  I  |->  ( R `  x
) ) )
13520, 134syl6eqr 2523 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  Y  =  ( S
X_s ( y  e.  I  |->  ( R `  y
) ) ) )
136135fveq2d 5883 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( dist `  Y
)  =  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
13714, 136syl5eq 2517 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  D  =  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
138137fveq2d 5883 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ball `  D
)  =  ( ball `  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) ) )
139138oveqdr 6332 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( y  e.  B  /\  r  e.  RR+ ) )  -> 
( y ( ball `  D ) r )  =  ( y (
ball `  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) ) r ) )
140 eqid 2471 . . . . . . . . . . . . . . . . . 18  |-  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) )  =  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) )
141 eqid 2471 . . . . . . . . . . . . . . . . . 18  |-  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) )  =  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) )
1426adantr 472 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  B  /\  r  e.  RR+ ) )  ->  S  e.  W )
1437adantr 472 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  B  /\  r  e.  RR+ ) )  ->  I  e.  Fin )
1448a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
y  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( R `  x )  e.  _V )
145 metxmet 21427 . . . . . . . . . . . . . . . . . . . 20  |-  ( E  e.  ( Met `  V
)  ->  E  e.  ( *Met `  V
) )
14612, 145syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( *Met `  V ) )
147146adantlr 729 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
y  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  E  e.  ( *Met `  V
) )
148 simprl 772 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( y  e.  B  /\  r  e.  RR+ ) )  -> 
y  e.  B )
149135fveq2d 5883 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
15023, 149syl5eq 2517 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  B  =  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
151150adantr 472 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( y  e.  B  /\  r  e.  RR+ ) )  ->  B  =  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
152148, 151eleqtrd 2551 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  B  /\  r  e.  RR+ ) )  -> 
y  e.  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
15374ad2antll 743 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  B  /\  r  e.  RR+ ) )  -> 
r  e.  RR* )
154 rpgt0 11336 . . . . . . . . . . . . . . . . . . 19  |-  ( r  e.  RR+  ->  0  < 
r )
155154ad2antll 743 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  B  /\  r  e.  RR+ ) )  -> 
0  <  r )
156134, 140, 3, 4, 141, 142, 143, 144, 147, 152, 153, 155prdsbl 21584 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( y  e.  B  /\  r  e.  RR+ ) )  -> 
( y ( ball `  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) ) r )  = 
X_ x  e.  I 
( ( y `  x ) ( ball `  E ) r ) )
157139, 156eqtrd 2505 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( y  e.  B  /\  r  e.  RR+ ) )  -> 
( y ( ball `  D ) r )  =  X_ x  e.  I 
( ( y `  x ) ( ball `  E ) r ) )
158126, 130, 131, 157syl12anc 1290 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  (
y ( ball `  D
) r )  = 
X_ x  e.  I 
( ( y `  x ) ( ball `  E ) r ) )
159125, 158eleqtrrd 2552 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  g  e.  ( y ( ball `  D ) r ) )
160116, 159jca 541 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  (
y  e.  X_ x  e.  I  ( f `  x )  /\  g  e.  ( y ( ball `  D ) r ) ) )
161160ex 441 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  ->  ( ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) )  ->  ( y  e.  X_ x  e.  I 
( f `  x
)  /\  g  e.  ( y ( ball `  D ) r ) ) ) )
162161eximdv 1772 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  ->  ( E. y ( y : I --> _V  /\  A. x  e.  I  ( ( y `  x
)  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) ) )  ->  E. y
( y  e.  X_ x  e.  I  (
f `  x )  /\  g  e.  (
y ( ball `  D
) r ) ) ) )
163 df-rex 2762 . . . . . . . . . . 11  |-  ( E. y  e.  X_  x  e.  I  ( f `  x ) g  e.  ( y ( ball `  D ) r )  <->  E. y ( y  e.  X_ x  e.  I 
( f `  x
)  /\  g  e.  ( y ( ball `  D ) r ) ) )
164162, 163syl6ibr 235 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  ->  ( E. y ( y : I --> _V  /\  A. x  e.  I  ( ( y `  x
)  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) ) )  ->  E. y  e.  X_  x  e.  I 
( f `  x
) g  e.  ( y ( ball `  D
) r ) ) )
165108, 164mpd 15 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  ->  E. y  e.  X_  x  e.  I  (
f `  x )
g  e.  ( y ( ball `  D
) r ) )
166165ex 441 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  ( g  e.  B  ->  E. y  e.  X_  x  e.  I 
( f `  x
) g  e.  ( y ( ball `  D
) r ) ) )
167 eliun 4274 . . . . . . . 8  |-  ( g  e.  U_ y  e.  X_  x  e.  I 
( f `  x
) ( y (
ball `  D )
r )  <->  E. y  e.  X_  x  e.  I 
( f `  x
) g  e.  ( y ( ball `  D
) r ) )
168166, 167syl6ibr 235 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  ( g  e.  B  ->  g  e. 
U_ y  e.  X_  x  e.  I  (
f `  x )
( y ( ball `  D ) r ) ) )
169168ssrdv 3424 . . . . . 6  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  B  C_  U_ y  e.  X_  x  e.  I 
( f `  x
) ( y (
ball `  D )
r ) )
17084, 169eqssd 3435 . . . . 5  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  U_ y  e.  X_  x  e.  I 
( f `  x
) ( y (
ball `  D )
r )  =  B )
171 iuneq1 4283 . . . . . . 7  |-  ( v  =  X_ x  e.  I 
( f `  x
)  ->  U_ y  e.  v  ( y (
ball `  D )
r )  =  U_ y  e.  X_  x  e.  I  ( f `  x ) ( y ( ball `  D
) r ) )
172171eqeq1d 2473 . . . . . 6  |-  ( v  =  X_ x  e.  I 
( f `  x
)  ->  ( U_ y  e.  v  (
y ( ball `  D
) r )  =  B  <->  U_ y  e.  X_  x  e.  I  (
f `  x )
( y ( ball `  D ) r )  =  B ) )
173172rspcev 3136 . . . . 5  |-  ( (
X_ x  e.  I 
( f `  x
)  e.  ( ~P B  i^i  Fin )  /\  U_ y  e.  X_  x  e.  I  (
f `  x )
( y ( ball `  D ) r )  =  B )  ->  E. v  e.  ( ~P B  i^i  Fin ) U_ y  e.  v 
( y ( ball `  D ) r )  =  B )
17471, 170, 173syl2anc 673 . . . 4  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  E. v  e.  ( ~P B  i^i  Fin ) U_ y  e.  v  ( y (
ball `  D )
r )  =  B )
17544, 174exlimddv 1789 . . 3  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. v  e.  ( ~P B  i^i  Fin ) U_ y  e.  v  ( y (
ball `  D )
r )  =  B )
176175ralrimiva 2809 . 2  |-  ( ph  ->  A. r  e.  RR+  E. v  e.  ( ~P B  i^i  Fin ) U_ y  e.  v 
( y ( ball `  D ) r )  =  B )
177 istotbnd3 32167 . 2  |-  ( D  e.  ( TotBnd `  B
)  <->  ( D  e.  ( Met `  B
)  /\  A. r  e.  RR+  E. v  e.  ( ~P B  i^i  Fin ) U_ y  e.  v  ( y (
ball `  D )
r )  =  B ) )
17827, 176, 177sylanbrc 677 1  |-  ( ph  ->  D  e.  ( TotBnd `  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904   A.wral 2756   E.wrex 2757   _Vcvv 3031    i^i cin 3389    C_ wss 3390   ~Pcpw 3942   U_ciun 4269   class class class wbr 4395    |-> cmpt 4454    X. cxp 4837   dom cdm 4839    |` cres 4841    Fn wfn 5584   -->wf 5585   ` cfv 5589  (class class class)co 6308   X_cixp 7540   Fincfn 7587   0cc0 9557   RR*cxr 9692    < clt 9693   RR+crp 11325   Basecbs 15199   distcds 15277   X_scprds 15422   *Metcxmt 19032   Metcme 19033   ballcbl 19034   TotBndctotbnd 32162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-icc 11667  df-fz 11811  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-plusg 15281  df-mulr 15282  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-hom 15292  df-cco 15293  df-prds 15424  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-totbnd 32164
This theorem is referenced by:  prdsbnd2  32191
  Copyright terms: Public domain W3C validator