Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prdstotbnd Structured version   Unicode version

Theorem prdstotbnd 32037
Description: The product metric over finite index set is totally bounded if all the factors are totally bounded. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
prdsbnd.y  |-  Y  =  ( S X_s R )
prdsbnd.b  |-  B  =  ( Base `  Y
)
prdsbnd.v  |-  V  =  ( Base `  ( R `  x )
)
prdsbnd.e  |-  E  =  ( ( dist `  ( R `  x )
)  |`  ( V  X.  V ) )
prdsbnd.d  |-  D  =  ( dist `  Y
)
prdsbnd.s  |-  ( ph  ->  S  e.  W )
prdsbnd.i  |-  ( ph  ->  I  e.  Fin )
prdsbnd.r  |-  ( ph  ->  R  Fn  I )
prdstotbnd.m  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( TotBnd `  V )
)
Assertion
Ref Expression
prdstotbnd  |-  ( ph  ->  D  e.  ( TotBnd `  B ) )
Distinct variable groups:    x, R    x, B    ph, x    x, I    x, S    x, Y
Allowed substitution hints:    D( x)    E( x)    V( x)    W( x)

Proof of Theorem prdstotbnd
Dummy variables  z 
r  f  g  v  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2422 . . . 4  |-  ( S
X_s ( x  e.  I  |->  ( R `  x
) ) )  =  ( S X_s ( x  e.  I  |->  ( R `  x
) ) )
2 eqid 2422 . . . 4  |-  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )
3 prdsbnd.v . . . 4  |-  V  =  ( Base `  ( R `  x )
)
4 prdsbnd.e . . . 4  |-  E  =  ( ( dist `  ( R `  x )
)  |`  ( V  X.  V ) )
5 eqid 2422 . . . 4  |-  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )  =  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )
6 prdsbnd.s . . . 4  |-  ( ph  ->  S  e.  W )
7 prdsbnd.i . . . 4  |-  ( ph  ->  I  e.  Fin )
8 fvex 5887 . . . . 5  |-  ( R `
 x )  e. 
_V
98a1i 11 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ( R `  x )  e.  _V )
10 prdstotbnd.m . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( TotBnd `  V )
)
11 totbndmet 32015 . . . . 5  |-  ( E  e.  ( TotBnd `  V
)  ->  E  e.  ( Met `  V ) )
1210, 11syl 17 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( Met `  V
) )
131, 2, 3, 4, 5, 6, 7, 9, 12prdsmet 21369 . . 3  |-  ( ph  ->  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )  e.  ( Met `  ( Base `  ( S X_s (
x  e.  I  |->  ( R `  x ) ) ) ) ) )
14 prdsbnd.d . . . 4  |-  D  =  ( dist `  Y
)
15 prdsbnd.y . . . . . 6  |-  Y  =  ( S X_s R )
16 prdsbnd.r . . . . . . . 8  |-  ( ph  ->  R  Fn  I )
17 dffn5 5922 . . . . . . . 8  |-  ( R  Fn  I  <->  R  =  ( x  e.  I  |->  ( R `  x
) ) )
1816, 17sylib 199 . . . . . . 7  |-  ( ph  ->  R  =  ( x  e.  I  |->  ( R `
 x ) ) )
1918oveq2d 6317 . . . . . 6  |-  ( ph  ->  ( S X_s R )  =  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )
2015, 19syl5eq 2475 . . . . 5  |-  ( ph  ->  Y  =  ( S
X_s ( x  e.  I  |->  ( R `  x
) ) ) )
2120fveq2d 5881 . . . 4  |-  ( ph  ->  ( dist `  Y
)  =  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
2214, 21syl5eq 2475 . . 3  |-  ( ph  ->  D  =  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
23 prdsbnd.b . . . . 5  |-  B  =  ( Base `  Y
)
2420fveq2d 5881 . . . . 5  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
2523, 24syl5eq 2475 . . . 4  |-  ( ph  ->  B  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
2625fveq2d 5881 . . 3  |-  ( ph  ->  ( Met `  B
)  =  ( Met `  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) ) )
2713, 22, 263eltr4d 2525 . 2  |-  ( ph  ->  D  e.  ( Met `  B ) )
287adantr 466 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  I  e.  Fin )
29 istotbnd3 32014 . . . . . . . . . . 11  |-  ( E  e.  ( TotBnd `  V
)  <->  ( E  e.  ( Met `  V
)  /\  A. r  e.  RR+  E. w  e.  ( ~P V  i^i  Fin ) U_ z  e.  w  ( z (
ball `  E )
r )  =  V ) )
3029simprbi 465 . . . . . . . . . 10  |-  ( E  e.  ( TotBnd `  V
)  ->  A. r  e.  RR+  E. w  e.  ( ~P V  i^i  Fin ) U_ z  e.  w  ( z (
ball `  E )
r )  =  V )
3110, 30syl 17 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  A. r  e.  RR+  E. w  e.  ( ~P V  i^i  Fin ) U_ z  e.  w  ( z (
ball `  E )
r )  =  V )
3231r19.21bi 2794 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  I )  /\  r  e.  RR+ )  ->  E. w  e.  ( ~P V  i^i  Fin ) U_ z  e.  w  ( z (
ball `  E )
r )  =  V )
33 df-rex 2781 . . . . . . . . 9  |-  ( E. w  e.  ( ~P V  i^i  Fin ) U_ z  e.  w  ( z ( ball `  E ) r )  =  V  <->  E. w
( w  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  w  ( z (
ball `  E )
r )  =  V ) )
34 rexv 3096 . . . . . . . . 9  |-  ( E. w  e.  _V  (
w  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  w  ( z ( ball `  E ) r )  =  V )  <->  E. w
( w  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  w  ( z (
ball `  E )
r )  =  V ) )
3533, 34bitr4i 255 . . . . . . . 8  |-  ( E. w  e.  ( ~P V  i^i  Fin ) U_ z  e.  w  ( z ( ball `  E ) r )  =  V  <->  E. w  e.  _V  ( w  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  w  ( z
( ball `  E )
r )  =  V ) )
3632, 35sylib 199 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  I )  /\  r  e.  RR+ )  ->  E. w  e.  _V  ( w  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  w  ( z
( ball `  E )
r )  =  V ) )
3736an32s 811 . . . . . 6  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  x  e.  I )  ->  E. w  e.  _V  ( w  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  w  ( z
( ball `  E )
r )  =  V ) )
3837ralrimiva 2839 . . . . 5  |-  ( (
ph  /\  r  e.  RR+ )  ->  A. x  e.  I  E. w  e.  _V  ( w  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  w  ( z
( ball `  E )
r )  =  V ) )
39 eleq1 2494 . . . . . . 7  |-  ( w  =  ( f `  x )  ->  (
w  e.  ( ~P V  i^i  Fin )  <->  ( f `  x )  e.  ( ~P V  i^i  Fin ) ) )
40 iuneq1 4310 . . . . . . . 8  |-  ( w  =  ( f `  x )  ->  U_ z  e.  w  ( z
( ball `  E )
r )  =  U_ z  e.  ( f `  x ) ( z ( ball `  E
) r ) )
4140eqeq1d 2424 . . . . . . 7  |-  ( w  =  ( f `  x )  ->  ( U_ z  e.  w  ( z ( ball `  E ) r )  =  V  <->  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) )
4239, 41anbi12d 715 . . . . . 6  |-  ( w  =  ( f `  x )  ->  (
( w  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  w  ( z (
ball `  E )
r )  =  V )  <->  ( ( f `
 x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )
4342ac6sfi 7817 . . . . 5  |-  ( ( I  e.  Fin  /\  A. x  e.  I  E. w  e.  _V  (
w  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  w  ( z ( ball `  E ) r )  =  V ) )  ->  E. f ( f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )
4428, 38, 43syl2anc 665 . . . 4  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. f
( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )
45 elfpw 7878 . . . . . . . . . . . 12  |-  ( ( f `  x )  e.  ( ~P V  i^i  Fin )  <->  ( (
f `  x )  C_  V  /\  ( f `
 x )  e. 
Fin ) )
4645simplbi 461 . . . . . . . . . . 11  |-  ( ( f `  x )  e.  ( ~P V  i^i  Fin )  ->  (
f `  x )  C_  V )
4746adantr 466 . . . . . . . . . 10  |-  ( ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V )  -> 
( f `  x
)  C_  V )
4847ralimi 2818 . . . . . . . . 9  |-  ( A. x  e.  I  (
( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V )  ->  A. x  e.  I 
( f `  x
)  C_  V )
4948ad2antll 733 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  A. x  e.  I  ( f `  x )  C_  V
)
50 ss2ixp 7539 . . . . . . . 8  |-  ( A. x  e.  I  (
f `  x )  C_  V  ->  X_ x  e.  I  ( f `  x )  C_  X_ x  e.  I  V )
5149, 50syl 17 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  X_ x  e.  I  ( f `  x )  C_  X_ x  e.  I  V )
52 fnfi 7851 . . . . . . . . . . 11  |-  ( ( R  Fn  I  /\  I  e.  Fin )  ->  R  e.  Fin )
5316, 7, 52syl2anc 665 . . . . . . . . . 10  |-  ( ph  ->  R  e.  Fin )
54 fndm 5689 . . . . . . . . . . 11  |-  ( R  Fn  I  ->  dom  R  =  I )
5516, 54syl 17 . . . . . . . . . 10  |-  ( ph  ->  dom  R  =  I )
5615, 6, 53, 23, 55prdsbas 15340 . . . . . . . . 9  |-  ( ph  ->  B  =  X_ x  e.  I  ( Base `  ( R `  x
) ) )
573rgenw 2786 . . . . . . . . . 10  |-  A. x  e.  I  V  =  ( Base `  ( R `  x ) )
58 ixpeq2 7540 . . . . . . . . . 10  |-  ( A. x  e.  I  V  =  ( Base `  ( R `  x )
)  ->  X_ x  e.  I  V  =  X_ x  e.  I  ( Base `  ( R `  x ) ) )
5957, 58ax-mp 5 . . . . . . . . 9  |-  X_ x  e.  I  V  =  X_ x  e.  I  (
Base `  ( R `  x ) )
6056, 59syl6eqr 2481 . . . . . . . 8  |-  ( ph  ->  B  =  X_ x  e.  I  V )
6160ad2antrr 730 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  B  =  X_ x  e.  I  V )
6251, 61sseqtr4d 3501 . . . . . 6  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  X_ x  e.  I  ( f `  x )  C_  B
)
6328adantr 466 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  I  e.  Fin )
6445simprbi 465 . . . . . . . . . 10  |-  ( ( f `  x )  e.  ( ~P V  i^i  Fin )  ->  (
f `  x )  e.  Fin )
6564adantr 466 . . . . . . . . 9  |-  ( ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V )  -> 
( f `  x
)  e.  Fin )
6665ralimi 2818 . . . . . . . 8  |-  ( A. x  e.  I  (
( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V )  ->  A. x  e.  I 
( f `  x
)  e.  Fin )
6766ad2antll 733 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  A. x  e.  I  ( f `  x )  e.  Fin )
68 ixpfi 7873 . . . . . . 7  |-  ( ( I  e.  Fin  /\  A. x  e.  I  ( f `  x )  e.  Fin )  ->  X_ x  e.  I  ( f `  x )  e.  Fin )
6963, 67, 68syl2anc 665 . . . . . 6  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  X_ x  e.  I  ( f `  x )  e.  Fin )
70 elfpw 7878 . . . . . 6  |-  ( X_ x  e.  I  (
f `  x )  e.  ( ~P B  i^i  Fin )  <->  ( X_ x  e.  I  ( f `  x )  C_  B  /\  X_ x  e.  I 
( f `  x
)  e.  Fin )
)
7162, 69, 70sylanbrc 668 . . . . 5  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  X_ x  e.  I  ( f `  x )  e.  ( ~P B  i^i  Fin ) )
72 metxmet 21333 . . . . . . . . . . 11  |-  ( D  e.  ( Met `  B
)  ->  D  e.  ( *Met `  B
) )
7327, 72syl 17 . . . . . . . . . 10  |-  ( ph  ->  D  e.  ( *Met `  B ) )
74 rpxr 11309 . . . . . . . . . 10  |-  ( r  e.  RR+  ->  r  e. 
RR* )
75 blssm 21417 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  B )  /\  y  e.  B  /\  r  e.  RR* )  ->  ( y ( ball `  D ) r ) 
C_  B )
76753expa 1205 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( *Met `  B
)  /\  y  e.  B )  /\  r  e.  RR* )  ->  (
y ( ball `  D
) r )  C_  B )
7776an32s 811 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  B
)  /\  r  e.  RR* )  /\  y  e.  B )  ->  (
y ( ball `  D
) r )  C_  B )
7877ralrimiva 2839 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  B )  /\  r  e.  RR* )  ->  A. y  e.  B  ( y ( ball `  D ) r ) 
C_  B )
7973, 74, 78syl2an 479 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  RR+ )  ->  A. y  e.  B  ( y
( ball `  D )
r )  C_  B
)
8079adantr 466 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  A. y  e.  B  ( y
( ball `  D )
r )  C_  B
)
81 ssralv 3525 . . . . . . . 8  |-  ( X_ x  e.  I  (
f `  x )  C_  B  ->  ( A. y  e.  B  (
y ( ball `  D
) r )  C_  B  ->  A. y  e.  X_  x  e.  I  (
f `  x )
( y ( ball `  D ) r ) 
C_  B ) )
8262, 80, 81sylc 62 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  A. y  e.  X_  x  e.  I 
( f `  x
) ( y (
ball `  D )
r )  C_  B
)
83 iunss 4337 . . . . . . 7  |-  ( U_ y  e.  X_  x  e.  I  ( f `  x ) ( y ( ball `  D
) r )  C_  B 
<-> 
A. y  e.  X_  x  e.  I  (
f `  x )
( y ( ball `  D ) r ) 
C_  B )
8482, 83sylibr 215 . . . . . 6  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  U_ y  e.  X_  x  e.  I 
( f `  x
) ( y (
ball `  D )
r )  C_  B
)
8563adantr 466 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  ->  I  e.  Fin )
8661eleq2d 2492 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  ( g  e.  B  <->  g  e.  X_ x  e.  I  V
) )
87 vex 3084 . . . . . . . . . . . . . . . 16  |-  g  e. 
_V
8887elixp 7533 . . . . . . . . . . . . . . 15  |-  ( g  e.  X_ x  e.  I  V 
<->  ( g  Fn  I  /\  A. x  e.  I 
( g `  x
)  e.  V ) )
8988simprbi 465 . . . . . . . . . . . . . 14  |-  ( g  e.  X_ x  e.  I  V  ->  A. x  e.  I 
( g `  x
)  e.  V )
90 df-rex 2781 . . . . . . . . . . . . . . . . . . . 20  |-  ( E. z  e.  ( f `
 x ) ( g `  x )  e.  ( z (
ball `  E )
r )  <->  E. z
( z  e.  ( f `  x )  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) ) )
91 eliun 4301 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( g `  x )  e.  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  <->  E. z  e.  ( f `  x
) ( g `  x )  e.  ( z ( ball `  E
) r ) )
92 rexv 3096 . . . . . . . . . . . . . . . . . . . 20  |-  ( E. z  e.  _V  (
z  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( z ( ball `  E
) r ) )  <->  E. z ( z  e.  ( f `  x
)  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) ) )
9390, 91, 923bitr4i 280 . . . . . . . . . . . . . . . . . . 19  |-  ( ( g `  x )  e.  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  <->  E. z  e.  _V  ( z  e.  ( f `  x
)  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) ) )
94 eleq2 2495 . . . . . . . . . . . . . . . . . . 19  |-  ( U_ z  e.  ( f `  x ) ( z ( ball `  E
) r )  =  V  ->  ( (
g `  x )  e.  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  <-> 
( g `  x
)  e.  V ) )
9593, 94syl5bbr 262 . . . . . . . . . . . . . . . . . 18  |-  ( U_ z  e.  ( f `  x ) ( z ( ball `  E
) r )  =  V  ->  ( E. z  e.  _V  (
z  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( z ( ball `  E
) r ) )  <-> 
( g `  x
)  e.  V ) )
9695biimprd 226 . . . . . . . . . . . . . . . . 17  |-  ( U_ z  e.  ( f `  x ) ( z ( ball `  E
) r )  =  V  ->  ( (
g `  x )  e.  V  ->  E. z  e.  _V  ( z  e.  ( f `  x
)  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) ) ) )
9796adantl 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V )  -> 
( ( g `  x )  e.  V  ->  E. z  e.  _V  ( z  e.  ( f `  x )  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) ) ) )
9897ral2imi 2813 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  I  (
( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V )  -> 
( A. x  e.  I  ( g `  x )  e.  V  ->  A. x  e.  I  E. z  e.  _V  ( z  e.  ( f `  x )  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) ) ) )
9998ad2antll 733 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  ( A. x  e.  I  (
g `  x )  e.  V  ->  A. x  e.  I  E. z  e.  _V  ( z  e.  ( f `  x
)  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) ) ) )
10089, 99syl5 33 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  ( g  e.  X_ x  e.  I  V  ->  A. x  e.  I  E. z  e.  _V  ( z  e.  ( f `  x )  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) ) ) )
10186, 100sylbid 218 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  ( g  e.  B  ->  A. x  e.  I  E. z  e.  _V  ( z  e.  ( f `  x
)  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) ) ) )
102101imp 430 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  ->  A. x  e.  I  E. z  e.  _V  ( z  e.  ( f `  x )  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) ) )
103 eleq1 2494 . . . . . . . . . . . . 13  |-  ( z  =  ( y `  x )  ->  (
z  e.  ( f `
 x )  <->  ( y `  x )  e.  ( f `  x ) ) )
104 oveq1 6308 . . . . . . . . . . . . . 14  |-  ( z  =  ( y `  x )  ->  (
z ( ball `  E
) r )  =  ( ( y `  x ) ( ball `  E ) r ) )
105104eleq2d 2492 . . . . . . . . . . . . 13  |-  ( z  =  ( y `  x )  ->  (
( g `  x
)  e.  ( z ( ball `  E
) r )  <->  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) )
106103, 105anbi12d 715 . . . . . . . . . . . 12  |-  ( z  =  ( y `  x )  ->  (
( z  e.  ( f `  x )  /\  ( g `  x )  e.  ( z ( ball `  E
) r ) )  <-> 
( ( y `  x )  e.  ( f `  x )  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )
107106ac6sfi 7817 . . . . . . . . . . 11  |-  ( ( I  e.  Fin  /\  A. x  e.  I  E. z  e.  _V  (
z  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( z ( ball `  E
) r ) ) )  ->  E. y
( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )
10885, 102, 107syl2anc 665 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  ->  E. y ( y : I --> _V  /\  A. x  e.  I  ( ( y `  x
)  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) ) ) )
109 ffn 5742 . . . . . . . . . . . . . . . . 17  |-  ( y : I --> _V  ->  y  Fn  I )
110 simpl 458 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y `  x
)  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) )  ->  ( y `  x )  e.  ( f `  x ) )
111110ralimi 2818 . . . . . . . . . . . . . . . . 17  |-  ( A. x  e.  I  (
( y `  x
)  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) )  ->  A. x  e.  I 
( y `  x
)  e.  ( f `
 x ) )
112109, 111anim12i 568 . . . . . . . . . . . . . . . 16  |-  ( ( y : I --> _V  /\  A. x  e.  I  ( ( y `  x
)  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) ) )  ->  ( y  Fn  I  /\  A. x  e.  I  ( y `  x )  e.  ( f `  x ) ) )
113 vex 3084 . . . . . . . . . . . . . . . . 17  |-  y  e. 
_V
114113elixp 7533 . . . . . . . . . . . . . . . 16  |-  ( y  e.  X_ x  e.  I 
( f `  x
)  <->  ( y  Fn  I  /\  A. x  e.  I  ( y `  x )  e.  ( f `  x ) ) )
115112, 114sylibr 215 . . . . . . . . . . . . . . 15  |-  ( ( y : I --> _V  /\  A. x  e.  I  ( ( y `  x
)  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) ) )  ->  y  e.  X_ x  e.  I  ( f `  x ) )
116115adantl 467 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  y  e.  X_ x  e.  I 
( f `  x
) )
11786biimpa 486 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  ->  g  e.  X_ x  e.  I  V )
118 ixpfn 7532 . . . . . . . . . . . . . . . . . 18  |-  ( g  e.  X_ x  e.  I  V  ->  g  Fn  I
)
119117, 118syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  ->  g  Fn  I )
120119adantr 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  g  Fn  I )
121 simpr 462 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y `  x
)  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) )  ->  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) )
122121ralimi 2818 . . . . . . . . . . . . . . . . 17  |-  ( A. x  e.  I  (
( y `  x
)  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) )  ->  A. x  e.  I 
( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) )
123122ad2antll 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  A. x  e.  I  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) )
12487elixp 7533 . . . . . . . . . . . . . . . 16  |-  ( g  e.  X_ x  e.  I 
( ( y `  x ) ( ball `  E ) r )  <-> 
( g  Fn  I  /\  A. x  e.  I 
( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) ) )
125120, 123, 124sylanbrc 668 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  g  e.  X_ x  e.  I 
( ( y `  x ) ( ball `  E ) r ) )
126 simp-4l 774 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  ph )
12751ad2antrr 730 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  X_ x  e.  I  ( f `  x )  C_  X_ x  e.  I  V )
128127, 116sseldd 3465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  y  e.  X_ x  e.  I  V )
129126, 60syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  B  =  X_ x  e.  I  V )
130128, 129eleqtrrd 2513 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  y  e.  B )
131 simp-4r 775 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  r  e.  RR+ )
132 fveq2 5877 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  =  x  ->  ( R `  y )  =  ( R `  x ) )
133132cbvmptv 4513 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  I  |->  ( R `
 y ) )  =  ( x  e.  I  |->  ( R `  x ) )
134133oveq2i 6312 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( S
X_s ( y  e.  I  |->  ( R `  y
) ) )  =  ( S X_s ( x  e.  I  |->  ( R `  x
) ) )
13520, 134syl6eqr 2481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  Y  =  ( S
X_s ( y  e.  I  |->  ( R `  y
) ) ) )
136135fveq2d 5881 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( dist `  Y
)  =  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
13714, 136syl5eq 2475 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  D  =  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
138137fveq2d 5881 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ball `  D
)  =  ( ball `  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) ) )
139138oveqdr 6325 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( y  e.  B  /\  r  e.  RR+ ) )  -> 
( y ( ball `  D ) r )  =  ( y (
ball `  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) ) r ) )
140 eqid 2422 . . . . . . . . . . . . . . . . . 18  |-  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) )  =  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) )
141 eqid 2422 . . . . . . . . . . . . . . . . . 18  |-  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) )  =  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) )
1426adantr 466 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  B  /\  r  e.  RR+ ) )  ->  S  e.  W )
1437adantr 466 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  B  /\  r  e.  RR+ ) )  ->  I  e.  Fin )
1448a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
y  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( R `  x )  e.  _V )
145 metxmet 21333 . . . . . . . . . . . . . . . . . . . 20  |-  ( E  e.  ( Met `  V
)  ->  E  e.  ( *Met `  V
) )
14612, 145syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( *Met `  V ) )
147146adantlr 719 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
y  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  E  e.  ( *Met `  V
) )
148 simprl 762 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( y  e.  B  /\  r  e.  RR+ ) )  -> 
y  e.  B )
149135fveq2d 5881 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
15023, 149syl5eq 2475 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  B  =  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
151150adantr 466 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( y  e.  B  /\  r  e.  RR+ ) )  ->  B  =  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
152148, 151eleqtrd 2512 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  B  /\  r  e.  RR+ ) )  -> 
y  e.  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
15374ad2antll 733 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  B  /\  r  e.  RR+ ) )  -> 
r  e.  RR* )
154 rpgt0 11313 . . . . . . . . . . . . . . . . . . 19  |-  ( r  e.  RR+  ->  0  < 
r )
155154ad2antll 733 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( y  e.  B  /\  r  e.  RR+ ) )  -> 
0  <  r )
156134, 140, 3, 4, 141, 142, 143, 144, 147, 152, 153, 155prdsbl 21490 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( y  e.  B  /\  r  e.  RR+ ) )  -> 
( y ( ball `  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) ) r )  = 
X_ x  e.  I 
( ( y `  x ) ( ball `  E ) r ) )
157139, 156eqtrd 2463 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( y  e.  B  /\  r  e.  RR+ ) )  -> 
( y ( ball `  D ) r )  =  X_ x  e.  I 
( ( y `  x ) ( ball `  E ) r ) )
158126, 130, 131, 157syl12anc 1262 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  (
y ( ball `  D
) r )  = 
X_ x  e.  I 
( ( y `  x ) ( ball `  E ) r ) )
159125, 158eleqtrrd 2513 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  g  e.  ( y ( ball `  D ) r ) )
160116, 159jca 534 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  /\  ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) ) )  ->  (
y  e.  X_ x  e.  I  ( f `  x )  /\  g  e.  ( y ( ball `  D ) r ) ) )
161160ex 435 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  ->  ( ( y : I --> _V  /\  A. x  e.  I  ( (
y `  x )  e.  ( f `  x
)  /\  ( g `  x )  e.  ( ( y `  x
) ( ball `  E
) r ) ) )  ->  ( y  e.  X_ x  e.  I 
( f `  x
)  /\  g  e.  ( y ( ball `  D ) r ) ) ) )
162161eximdv 1754 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  ->  ( E. y ( y : I --> _V  /\  A. x  e.  I  ( ( y `  x
)  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) ) )  ->  E. y
( y  e.  X_ x  e.  I  (
f `  x )  /\  g  e.  (
y ( ball `  D
) r ) ) ) )
163 df-rex 2781 . . . . . . . . . . 11  |-  ( E. y  e.  X_  x  e.  I  ( f `  x ) g  e.  ( y ( ball `  D ) r )  <->  E. y ( y  e.  X_ x  e.  I 
( f `  x
)  /\  g  e.  ( y ( ball `  D ) r ) ) )
164162, 163syl6ibr 230 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  ->  ( E. y ( y : I --> _V  /\  A. x  e.  I  ( ( y `  x
)  e.  ( f `
 x )  /\  ( g `  x
)  e.  ( ( y `  x ) ( ball `  E
) r ) ) )  ->  E. y  e.  X_  x  e.  I 
( f `  x
) g  e.  ( y ( ball `  D
) r ) ) )
165108, 164mpd 15 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( f : I --> _V  /\  A. x  e.  I  ( (
f `  x )  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x
) ( z (
ball `  E )
r )  =  V ) ) )  /\  g  e.  B )  ->  E. y  e.  X_  x  e.  I  (
f `  x )
g  e.  ( y ( ball `  D
) r ) )
166165ex 435 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  ( g  e.  B  ->  E. y  e.  X_  x  e.  I 
( f `  x
) g  e.  ( y ( ball `  D
) r ) ) )
167 eliun 4301 . . . . . . . 8  |-  ( g  e.  U_ y  e.  X_  x  e.  I 
( f `  x
) ( y (
ball `  D )
r )  <->  E. y  e.  X_  x  e.  I 
( f `  x
) g  e.  ( y ( ball `  D
) r ) )
168166, 167syl6ibr 230 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  ( g  e.  B  ->  g  e. 
U_ y  e.  X_  x  e.  I  (
f `  x )
( y ( ball `  D ) r ) ) )
169168ssrdv 3470 . . . . . 6  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  B  C_  U_ y  e.  X_  x  e.  I 
( f `  x
) ( y (
ball `  D )
r ) )
17084, 169eqssd 3481 . . . . 5  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  U_ y  e.  X_  x  e.  I 
( f `  x
) ( y (
ball `  D )
r )  =  B )
171 iuneq1 4310 . . . . . . 7  |-  ( v  =  X_ x  e.  I 
( f `  x
)  ->  U_ y  e.  v  ( y (
ball `  D )
r )  =  U_ y  e.  X_  x  e.  I  ( f `  x ) ( y ( ball `  D
) r ) )
172171eqeq1d 2424 . . . . . 6  |-  ( v  =  X_ x  e.  I 
( f `  x
)  ->  ( U_ y  e.  v  (
y ( ball `  D
) r )  =  B  <->  U_ y  e.  X_  x  e.  I  (
f `  x )
( y ( ball `  D ) r )  =  B ) )
173172rspcev 3182 . . . . 5  |-  ( (
X_ x  e.  I 
( f `  x
)  e.  ( ~P B  i^i  Fin )  /\  U_ y  e.  X_  x  e.  I  (
f `  x )
( y ( ball `  D ) r )  =  B )  ->  E. v  e.  ( ~P B  i^i  Fin ) U_ y  e.  v 
( y ( ball `  D ) r )  =  B )
17471, 170, 173syl2anc 665 . . . 4  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
f : I --> _V  /\  A. x  e.  I  ( ( f `  x
)  e.  ( ~P V  i^i  Fin )  /\  U_ z  e.  ( f `  x ) ( z ( ball `  E ) r )  =  V ) ) )  ->  E. v  e.  ( ~P B  i^i  Fin ) U_ y  e.  v  ( y (
ball `  D )
r )  =  B )
17544, 174exlimddv 1770 . . 3  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. v  e.  ( ~P B  i^i  Fin ) U_ y  e.  v  ( y (
ball `  D )
r )  =  B )
176175ralrimiva 2839 . 2  |-  ( ph  ->  A. r  e.  RR+  E. v  e.  ( ~P B  i^i  Fin ) U_ y  e.  v 
( y ( ball `  D ) r )  =  B )
177 istotbnd3 32014 . 2  |-  ( D  e.  ( TotBnd `  B
)  <->  ( D  e.  ( Met `  B
)  /\  A. r  e.  RR+  E. v  e.  ( ~P B  i^i  Fin ) U_ y  e.  v  ( y (
ball `  D )
r )  =  B ) )
17827, 176, 177sylanbrc 668 1  |-  ( ph  ->  D  e.  ( TotBnd `  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437   E.wex 1659    e. wcel 1868   A.wral 2775   E.wrex 2776   _Vcvv 3081    i^i cin 3435    C_ wss 3436   ~Pcpw 3979   U_ciun 4296   class class class wbr 4420    |-> cmpt 4479    X. cxp 4847   dom cdm 4849    |` cres 4851    Fn wfn 5592   -->wf 5593   ` cfv 5597  (class class class)co 6301   X_cixp 7526   Fincfn 7573   0cc0 9539   RR*cxr 9674    < clt 9675   RR+crp 11302   Basecbs 15106   distcds 15184   X_scprds 15329   *Metcxmt 18940   Metcme 18941   ballcbl 18942   TotBndctotbnd 32009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-1st 6803  df-2nd 6804  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-2o 7187  df-oadd 7190  df-er 7367  df-map 7478  df-pm 7479  df-ixp 7527  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-sup 7958  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-icc 11642  df-fz 11785  df-struct 15108  df-ndx 15109  df-slot 15110  df-base 15111  df-plusg 15188  df-mulr 15189  df-sca 15191  df-vsca 15192  df-ip 15193  df-tset 15194  df-ple 15195  df-ds 15197  df-hom 15199  df-cco 15200  df-prds 15331  df-psmet 18947  df-xmet 18948  df-met 18949  df-bl 18950  df-totbnd 32011
This theorem is referenced by:  prdsbnd2  32038
  Copyright terms: Public domain W3C validator