MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstopn Structured version   Visualization version   Unicode version

Theorem prdstopn 20698
Description: Topology of a structure product. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
prdstopn.y  |-  Y  =  ( S X_s R )
prdstopn.s  |-  ( ph  ->  S  e.  V )
prdstopn.i  |-  ( ph  ->  I  e.  W )
prdstopn.r  |-  ( ph  ->  R  Fn  I )
prdstopn.o  |-  O  =  ( TopOpen `  Y )
Assertion
Ref Expression
prdstopn  |-  ( ph  ->  O  =  ( Xt_ `  ( TopOpen  o.  R )
) )

Proof of Theorem prdstopn
Dummy variables  x  g  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdstopn.y . . . . . 6  |-  Y  =  ( S X_s R )
2 prdstopn.s . . . . . 6  |-  ( ph  ->  S  e.  V )
3 prdstopn.r . . . . . . 7  |-  ( ph  ->  R  Fn  I )
4 prdstopn.i . . . . . . 7  |-  ( ph  ->  I  e.  W )
5 fnex 6162 . . . . . . 7  |-  ( ( R  Fn  I  /\  I  e.  W )  ->  R  e.  _V )
63, 4, 5syl2anc 671 . . . . . 6  |-  ( ph  ->  R  e.  _V )
7 eqid 2462 . . . . . 6  |-  ( Base `  Y )  =  (
Base `  Y )
8 eqidd 2463 . . . . . 6  |-  ( ph  ->  dom  R  =  dom  R )
9 eqid 2462 . . . . . 6  |-  (TopSet `  Y )  =  (TopSet `  Y )
101, 2, 6, 7, 8, 9prdstset 15419 . . . . 5  |-  ( ph  ->  (TopSet `  Y )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
11 topnfn 15379 . . . . . . . . . . 11  |-  TopOpen  Fn  _V
12 dffn2 5757 . . . . . . . . . . . 12  |-  ( R  Fn  I  <->  R :
I --> _V )
133, 12sylib 201 . . . . . . . . . . 11  |-  ( ph  ->  R : I --> _V )
14 fnfco 5775 . . . . . . . . . . 11  |-  ( (
TopOpen  Fn  _V  /\  R : I --> _V )  ->  ( TopOpen  o.  R )  Fn  I )
1511, 13, 14sylancr 674 . . . . . . . . . 10  |-  ( ph  ->  ( TopOpen  o.  R )  Fn  I )
16 eqid 2462 . . . . . . . . . . 11  |-  { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) }  =  {
x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) }
1716ptval 20640 . . . . . . . . . 10  |-  ( ( I  e.  W  /\  ( TopOpen  o.  R )  Fn  I )  ->  ( Xt_ `  ( TopOpen  o.  R
) )  =  (
topGen `  { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } ) )
184, 15, 17syl2anc 671 . . . . . . . . 9  |-  ( ph  ->  ( Xt_ `  ( TopOpen  o.  R ) )  =  ( topGen `  {
x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } ) )
1918unieqd 4222 . . . . . . . 8  |-  ( ph  ->  U. ( Xt_ `  ( TopOpen  o.  R ) )  =  U. ( topGen `  { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  (
g `  y )  e.  ( ( TopOpen  o.  R
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I 
\  z ) ( g `  y )  =  U. ( (
TopOpen  o.  R ) `  y ) )  /\  x  =  X_ y  e.  I  ( g `  y ) ) } ) )
20 simpl2 1018 . . . . . . . . . . . . . . . 16  |-  ( ( ( g  Fn  I  /\  A. y  e.  I 
( g `  y
)  e.  ( (
TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) )  ->  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y ) )
21 fvco2 5968 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  Fn  I  /\  y  e.  I )  ->  ( ( TopOpen  o.  R
) `  y )  =  ( TopOpen `  ( R `  y )
) )
223, 21sylan 478 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  I )  ->  (
( TopOpen  o.  R ) `  y )  =  (
TopOpen `  ( R `  y ) ) )
23 eqid 2462 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Base `  ( R `  y
) )  =  (
Base `  ( R `  y ) )
24 eqid 2462 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (TopSet `  ( R `  y ) )  =  (TopSet `  ( R `  y ) )
2523, 24topnval 15388 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (TopSet `  ( R `  y
) )t  ( Base `  ( R `  y )
) )  =  (
TopOpen `  ( R `  y ) )
26 restsspw 15385 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (TopSet `  ( R `  y
) )t  ( Base `  ( R `  y )
) )  C_  ~P ( Base `  ( R `  y ) )
2725, 26eqsstr3i 3475 . . . . . . . . . . . . . . . . . . . . 21  |-  ( TopOpen `  ( R `  y ) )  C_  ~P ( Base `  ( R `  y ) )
2822, 27syl6eqss 3494 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  I )  ->  (
( TopOpen  o.  R ) `  y )  C_  ~P ( Base `  ( R `  y ) ) )
2928sseld 3443 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  I )  ->  (
( g `  y
)  e.  ( (
TopOpen  o.  R ) `  y )  ->  (
g `  y )  e.  ~P ( Base `  ( R `  y )
) ) )
30 fvex 5902 . . . . . . . . . . . . . . . . . . . 20  |-  ( g `
 y )  e. 
_V
3130elpw 3969 . . . . . . . . . . . . . . . . . . 19  |-  ( ( g `  y )  e.  ~P ( Base `  ( R `  y
) )  <->  ( g `  y )  C_  ( Base `  ( R `  y ) ) )
3229, 31syl6ib 234 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  I )  ->  (
( g `  y
)  e.  ( (
TopOpen  o.  R ) `  y )  ->  (
g `  y )  C_  ( Base `  ( R `  y )
) ) )
3332ralimdva 2808 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  ->  A. y  e.  I  ( g `  y )  C_  ( Base `  ( R `  y ) ) ) )
3433imp 435 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y ) )  ->  A. y  e.  I 
( g `  y
)  C_  ( Base `  ( R `  y
) ) )
3520, 34sylan2 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) )  ->  A. y  e.  I  ( g `  y )  C_  ( Base `  ( R `  y ) ) )
36 ss2ixp 7566 . . . . . . . . . . . . . . 15  |-  ( A. y  e.  I  (
g `  y )  C_  ( Base `  ( R `  y )
)  ->  X_ y  e.  I  ( g `  y )  C_  X_ y  e.  I  ( Base `  ( R `  y
) ) )
3735, 36syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) )  ->  X_ y  e.  I  ( g `  y )  C_  X_ y  e.  I  ( Base `  ( R `  y
) ) )
38 simprr 771 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) )  ->  x  =  X_ y  e.  I 
( g `  y
) )
391, 7, 2, 4, 3prdsbas2 15422 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Base `  Y
)  =  X_ y  e.  I  ( Base `  ( R `  y
) ) )
4039adantr 471 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) )  ->  ( Base `  Y )  = 
X_ y  e.  I 
( Base `  ( R `  y ) ) )
4137, 38, 403sstr4d 3487 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) )  ->  x  C_  ( Base `  Y
) )
4241ex 440 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( g  Fn  I  /\  A. y  e.  I  (
g `  y )  e.  ( ( TopOpen  o.  R
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I 
\  z ) ( g `  y )  =  U. ( (
TopOpen  o.  R ) `  y ) )  /\  x  =  X_ y  e.  I  ( g `  y ) )  ->  x  C_  ( Base `  Y
) ) )
4342exlimdv 1790 . . . . . . . . . . 11  |-  ( ph  ->  ( E. g ( ( g  Fn  I  /\  A. y  e.  I 
( g `  y
)  e.  ( (
TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) )  ->  x  C_  ( Base `  Y ) ) )
44 selpw 3970 . . . . . . . . . . 11  |-  ( x  e.  ~P ( Base `  Y )  <->  x  C_  ( Base `  Y ) )
4543, 44syl6ibr 235 . . . . . . . . . 10  |-  ( ph  ->  ( E. g ( ( g  Fn  I  /\  A. y  e.  I 
( g `  y
)  e.  ( (
TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) )  ->  x  e.  ~P ( Base `  Y
) ) )
4645abssdv 3515 . . . . . . . . 9  |-  ( ph  ->  { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  (
g `  y )  e.  ( ( TopOpen  o.  R
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I 
\  z ) ( g `  y )  =  U. ( (
TopOpen  o.  R ) `  y ) )  /\  x  =  X_ y  e.  I  ( g `  y ) ) } 
C_  ~P ( Base `  Y
) )
47 fvex 5902 . . . . . . . . . . 11  |-  ( Base `  Y )  e.  _V
4847pwex 4603 . . . . . . . . . 10  |-  ~P ( Base `  Y )  e. 
_V
4948ssex 4563 . . . . . . . . 9  |-  ( { x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) }  C_  ~P ( Base `  Y )  ->  { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  (
g `  y )  e.  ( ( TopOpen  o.  R
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I 
\  z ) ( g `  y )  =  U. ( (
TopOpen  o.  R ) `  y ) )  /\  x  =  X_ y  e.  I  ( g `  y ) ) }  e.  _V )
50 unitg 20037 . . . . . . . . 9  |-  ( { x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) }  e.  _V  ->  U. ( topGen `  {
x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } )  = 
U. { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } )
5146, 49, 503syl 18 . . . . . . . 8  |-  ( ph  ->  U. ( topGen `  {
x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } )  = 
U. { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } )
5219, 51eqtrd 2496 . . . . . . 7  |-  ( ph  ->  U. ( Xt_ `  ( TopOpen  o.  R ) )  =  U. { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } )
53 sspwuni 4383 . . . . . . . 8  |-  ( { x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) }  C_  ~P ( Base `  Y )  <->  U. { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  (
g `  y )  e.  ( ( TopOpen  o.  R
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I 
\  z ) ( g `  y )  =  U. ( (
TopOpen  o.  R ) `  y ) )  /\  x  =  X_ y  e.  I  ( g `  y ) ) } 
C_  ( Base `  Y
) )
5446, 53sylib 201 . . . . . . 7  |-  ( ph  ->  U. { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) }  C_  ( Base `  Y ) )
5552, 54eqsstrd 3478 . . . . . 6  |-  ( ph  ->  U. ( Xt_ `  ( TopOpen  o.  R ) ) 
C_  ( Base `  Y
) )
56 sspwuni 4383 . . . . . 6  |-  ( (
Xt_ `  ( TopOpen  o.  R
) )  C_  ~P ( Base `  Y )  <->  U. ( Xt_ `  ( TopOpen  o.  R ) ) 
C_  ( Base `  Y
) )
5755, 56sylibr 217 . . . . 5  |-  ( ph  ->  ( Xt_ `  ( TopOpen  o.  R ) ) 
C_  ~P ( Base `  Y
) )
5810, 57eqsstrd 3478 . . . 4  |-  ( ph  ->  (TopSet `  Y )  C_ 
~P ( Base `  Y
) )
597, 9topnid 15389 . . . 4  |-  ( (TopSet `  Y )  C_  ~P ( Base `  Y )  ->  (TopSet `  Y )  =  ( TopOpen `  Y
) )
6058, 59syl 17 . . 3  |-  ( ph  ->  (TopSet `  Y )  =  ( TopOpen `  Y
) )
61 prdstopn.o . . 3  |-  O  =  ( TopOpen `  Y )
6260, 61syl6eqr 2514 . 2  |-  ( ph  ->  (TopSet `  Y )  =  O )
6362, 10eqtr3d 2498 1  |-  ( ph  ->  O  =  ( Xt_ `  ( TopOpen  o.  R )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375    /\ w3a 991    = wceq 1455   E.wex 1674    e. wcel 1898   {cab 2448   A.wral 2749   E.wrex 2750   _Vcvv 3057    \ cdif 3413    C_ wss 3416   ~Pcpw 3963   U.cuni 4212   dom cdm 4856    o. ccom 4860    Fn wfn 5600   -->wf 5601   ` cfv 5605  (class class class)co 6320   X_cixp 7553   Fincfn 7600   Basecbs 15176  TopSetcts 15251   ↾t crest 15374   TopOpenctopn 15375   topGenctg 15391   Xt_cpt 15392   X_scprds 15399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4531  ax-sep 4541  ax-nul 4550  ax-pow 4598  ax-pr 4656  ax-un 6615  ax-cnex 9626  ax-resscn 9627  ax-1cn 9628  ax-icn 9629  ax-addcl 9630  ax-addrcl 9631  ax-mulcl 9632  ax-mulrcl 9633  ax-mulcom 9634  ax-addass 9635  ax-mulass 9636  ax-distr 9637  ax-i2m1 9638  ax-1ne0 9639  ax-1rid 9640  ax-rnegex 9641  ax-rrecex 9642  ax-cnre 9643  ax-pre-lttri 9644  ax-pre-lttrn 9645  ax-pre-ltadd 9646  ax-pre-mulgt0 9647
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-br 4419  df-opab 4478  df-mpt 4479  df-tr 4514  df-eprel 4767  df-id 4771  df-po 4777  df-so 4778  df-fr 4815  df-we 4817  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-pred 5403  df-ord 5449  df-on 5450  df-lim 5451  df-suc 5452  df-iota 5569  df-fun 5607  df-fn 5608  df-f 5609  df-f1 5610  df-fo 5611  df-f1o 5612  df-fv 5613  df-riota 6282  df-ov 6323  df-oprab 6324  df-mpt2 6325  df-om 6725  df-1st 6825  df-2nd 6826  df-wrecs 7059  df-recs 7121  df-rdg 7159  df-1o 7213  df-oadd 7217  df-er 7394  df-map 7505  df-ixp 7554  df-en 7601  df-dom 7602  df-sdom 7603  df-fin 7604  df-sup 7987  df-pnf 9708  df-mnf 9709  df-xr 9710  df-ltxr 9711  df-le 9712  df-sub 9893  df-neg 9894  df-nn 10643  df-2 10701  df-3 10702  df-4 10703  df-5 10704  df-6 10705  df-7 10706  df-8 10707  df-9 10708  df-10 10709  df-n0 10904  df-z 10972  df-dec 11086  df-uz 11194  df-fz 11820  df-struct 15178  df-ndx 15179  df-slot 15180  df-base 15181  df-plusg 15258  df-mulr 15259  df-sca 15261  df-vsca 15262  df-ip 15263  df-tset 15264  df-ple 15265  df-ds 15267  df-hom 15269  df-cco 15270  df-rest 15376  df-topn 15377  df-topgen 15397  df-pt 15398  df-prds 15401
This theorem is referenced by:  xpstopnlem2  20881  prdstmdd  21193  prdstgpd  21194  prdsxmslem2  21599
  Copyright terms: Public domain W3C validator