MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstmdd Structured version   Unicode version

Theorem prdstmdd 20916
Description: The product of a family of topological monoids is a topological monoid. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
prdstmdd.y  |-  Y  =  ( S X_s R )
prdstmdd.i  |-  ( ph  ->  I  e.  W )
prdstmdd.s  |-  ( ph  ->  S  e.  V )
prdstmdd.r  |-  ( ph  ->  R : I -->TopMnd )
Assertion
Ref Expression
prdstmdd  |-  ( ph  ->  Y  e. TopMnd )

Proof of Theorem prdstmdd
Dummy variables  f 
g  k  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdstmdd.y . . 3  |-  Y  =  ( S X_s R )
2 prdstmdd.i . . 3  |-  ( ph  ->  I  e.  W )
3 prdstmdd.s . . 3  |-  ( ph  ->  S  e.  V )
4 prdstmdd.r . . . 4  |-  ( ph  ->  R : I -->TopMnd )
5 tmdmnd 20868 . . . . 5  |-  ( x  e. TopMnd  ->  x  e.  Mnd )
65ssriv 3448 . . . 4  |- TopMnd  C_  Mnd
7 fss 5724 . . . 4  |-  ( ( R : I -->TopMnd  /\ TopMnd  C_  Mnd )  ->  R : I --> Mnd )
84, 6, 7sylancl 662 . . 3  |-  ( ph  ->  R : I --> Mnd )
91, 2, 3, 8prdsmndd 16279 . 2  |-  ( ph  ->  Y  e.  Mnd )
10 tmdtps 20869 . . . . 5  |-  ( x  e. TopMnd  ->  x  e.  TopSp )
1110ssriv 3448 . . . 4  |- TopMnd  C_  TopSp
12 fss 5724 . . . 4  |-  ( ( R : I -->TopMnd  /\ TopMnd  C_  TopSp )  ->  R : I --> TopSp )
134, 11, 12sylancl 662 . . 3  |-  ( ph  ->  R : I --> TopSp )
141, 3, 2, 13prdstps 20424 . 2  |-  ( ph  ->  Y  e.  TopSp )
15 eqid 2404 . . . . . . 7  |-  ( Base `  Y )  =  (
Base `  Y )
1633ad2ant1 1020 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( Base `  Y )  /\  g  e.  ( Base `  Y ) )  ->  S  e.  V
)
1723ad2ant1 1020 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( Base `  Y )  /\  g  e.  ( Base `  Y ) )  ->  I  e.  W
)
18 ffn 5716 . . . . . . . . 9  |-  ( R : I -->TopMnd  ->  R  Fn  I )
194, 18syl 17 . . . . . . . 8  |-  ( ph  ->  R  Fn  I )
20193ad2ant1 1020 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( Base `  Y )  /\  g  e.  ( Base `  Y ) )  ->  R  Fn  I
)
21 simp2 1000 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( Base `  Y )  /\  g  e.  ( Base `  Y ) )  ->  f  e.  (
Base `  Y )
)
22 simp3 1001 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( Base `  Y )  /\  g  e.  ( Base `  Y ) )  ->  g  e.  (
Base `  Y )
)
23 eqid 2404 . . . . . . 7  |-  ( +g  `  Y )  =  ( +g  `  Y )
241, 15, 16, 17, 20, 21, 22, 23prdsplusgval 15089 . . . . . 6  |-  ( (
ph  /\  f  e.  ( Base `  Y )  /\  g  e.  ( Base `  Y ) )  ->  ( f ( +g  `  Y ) g )  =  ( k  e.  I  |->  ( ( f `  k
) ( +g  `  ( R `  k )
) ( g `  k ) ) ) )
2524mpt2eq3dva 6344 . . . . 5  |-  ( ph  ->  ( f  e.  (
Base `  Y ) ,  g  e.  ( Base `  Y )  |->  ( f ( +g  `  Y
) g ) )  =  ( f  e.  ( Base `  Y
) ,  g  e.  ( Base `  Y
)  |->  ( k  e.  I  |->  ( ( f `
 k ) ( +g  `  ( R `
 k ) ) ( g `  k
) ) ) ) )
26 eqid 2404 . . . . . 6  |-  ( +f `  Y )  =  ( +f `  Y )
2715, 23, 26plusffval 16203 . . . . 5  |-  ( +f `  Y )  =  ( f  e.  ( Base `  Y
) ,  g  e.  ( Base `  Y
)  |->  ( f ( +g  `  Y ) g ) )
28 vex 3064 . . . . . . . . . 10  |-  f  e. 
_V
29 vex 3064 . . . . . . . . . 10  |-  g  e. 
_V
3028, 29op1std 6796 . . . . . . . . 9  |-  ( z  =  <. f ,  g
>.  ->  ( 1st `  z
)  =  f )
3130fveq1d 5853 . . . . . . . 8  |-  ( z  =  <. f ,  g
>.  ->  ( ( 1st `  z ) `  k
)  =  ( f `
 k ) )
3228, 29op2ndd 6797 . . . . . . . . 9  |-  ( z  =  <. f ,  g
>.  ->  ( 2nd `  z
)  =  g )
3332fveq1d 5853 . . . . . . . 8  |-  ( z  =  <. f ,  g
>.  ->  ( ( 2nd `  z ) `  k
)  =  ( g `
 k ) )
3431, 33oveq12d 6298 . . . . . . 7  |-  ( z  =  <. f ,  g
>.  ->  ( ( ( 1st `  z ) `
 k ) ( +g  `  ( R `
 k ) ) ( ( 2nd `  z
) `  k )
)  =  ( ( f `  k ) ( +g  `  ( R `  k )
) ( g `  k ) ) )
3534mpteq2dv 4484 . . . . . 6  |-  ( z  =  <. f ,  g
>.  ->  ( k  e.  I  |->  ( ( ( 1st `  z ) `
 k ) ( +g  `  ( R `
 k ) ) ( ( 2nd `  z
) `  k )
) )  =  ( k  e.  I  |->  ( ( f `  k
) ( +g  `  ( R `  k )
) ( g `  k ) ) ) )
3635mpt2mpt 6377 . . . . 5  |-  ( z  e.  ( ( Base `  Y )  X.  ( Base `  Y ) ) 
|->  ( k  e.  I  |->  ( ( ( 1st `  z ) `  k
) ( +g  `  ( R `  k )
) ( ( 2nd `  z ) `  k
) ) ) )  =  ( f  e.  ( Base `  Y
) ,  g  e.  ( Base `  Y
)  |->  ( k  e.  I  |->  ( ( f `
 k ) ( +g  `  ( R `
 k ) ) ( g `  k
) ) ) )
3725, 27, 363eqtr4g 2470 . . . 4  |-  ( ph  ->  ( +f `  Y )  =  ( z  e.  ( (
Base `  Y )  X.  ( Base `  Y
) )  |->  ( k  e.  I  |->  ( ( ( 1st `  z
) `  k )
( +g  `  ( R `
 k ) ) ( ( 2nd `  z
) `  k )
) ) ) )
38 eqid 2404 . . . . 5  |-  ( Xt_ `  ( TopOpen  o.  R )
)  =  ( Xt_ `  ( TopOpen  o.  R )
)
39 eqid 2404 . . . . . . . 8  |-  ( TopOpen `  Y )  =  (
TopOpen `  Y )
4015, 39istps 19731 . . . . . . 7  |-  ( Y  e.  TopSp 
<->  ( TopOpen `  Y )  e.  (TopOn `  ( Base `  Y ) ) )
4114, 40sylib 198 . . . . . 6  |-  ( ph  ->  ( TopOpen `  Y )  e.  (TopOn `  ( Base `  Y ) ) )
42 txtopon 20386 . . . . . 6  |-  ( ( ( TopOpen `  Y )  e.  (TopOn `  ( Base `  Y ) )  /\  ( TopOpen `  Y )  e.  (TopOn `  ( Base `  Y ) ) )  ->  ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  e.  (TopOn `  (
( Base `  Y )  X.  ( Base `  Y
) ) ) )
4341, 41, 42syl2anc 661 . . . . 5  |-  ( ph  ->  ( ( TopOpen `  Y
)  tX  ( TopOpen `  Y ) )  e.  (TopOn `  ( ( Base `  Y )  X.  ( Base `  Y
) ) ) )
44 topnfn 15042 . . . . . . . 8  |-  TopOpen  Fn  _V
45 ssv 3464 . . . . . . . 8  |-  TopSp  C_  _V
46 fnssres 5677 . . . . . . . 8  |-  ( (
TopOpen  Fn  _V  /\  TopSp  C_ 
_V )  ->  ( TopOpen  |`  TopSp )  Fn  TopSp )
4744, 45, 46mp2an 672 . . . . . . 7  |-  ( TopOpen  |`  TopSp
)  Fn  TopSp
48 fvres 5865 . . . . . . . . 9  |-  ( x  e.  TopSp  ->  ( ( TopOpen  |`  TopSp ) `  x
)  =  ( TopOpen `  x ) )
49 eqid 2404 . . . . . . . . . 10  |-  ( TopOpen `  x )  =  (
TopOpen `  x )
5049tpstop 19734 . . . . . . . . 9  |-  ( x  e.  TopSp  ->  ( TopOpen `  x )  e.  Top )
5148, 50eqeltrd 2492 . . . . . . . 8  |-  ( x  e.  TopSp  ->  ( ( TopOpen  |`  TopSp ) `  x
)  e.  Top )
5251rgen 2766 . . . . . . 7  |-  A. x  e.  TopSp  ( ( TopOpen  |`  TopSp
) `  x )  e.  Top
53 ffnfv 6038 . . . . . . 7  |-  ( (
TopOpen 
|`  TopSp ) : TopSp --> Top  <->  ( ( TopOpen  |`  TopSp )  Fn  TopSp  /\ 
A. x  e.  TopSp  ( ( TopOpen  |`  TopSp ) `  x
)  e.  Top )
)
5447, 52, 53mpbir2an 923 . . . . . 6  |-  ( TopOpen  |`  TopSp
) : TopSp --> Top
55 fco2 5727 . . . . . 6  |-  ( ( ( TopOpen  |`  TopSp ) : TopSp --> Top 
/\  R : I -->
TopSp )  ->  ( TopOpen  o.  R ) : I --> Top )
5654, 13, 55sylancr 663 . . . . 5  |-  ( ph  ->  ( TopOpen  o.  R ) : I --> Top )
5734mpt2mpt 6377 . . . . . 6  |-  ( z  e.  ( ( Base `  Y )  X.  ( Base `  Y ) ) 
|->  ( ( ( 1st `  z ) `  k
) ( +g  `  ( R `  k )
) ( ( 2nd `  z ) `  k
) ) )  =  ( f  e.  (
Base `  Y ) ,  g  e.  ( Base `  Y )  |->  ( ( f `  k
) ( +g  `  ( R `  k )
) ( g `  k ) ) )
58 eqid 2404 . . . . . . . 8  |-  ( TopOpen `  ( R `  k ) )  =  ( TopOpen `  ( R `  k ) )
59 eqid 2404 . . . . . . . 8  |-  ( +g  `  ( R `  k
) )  =  ( +g  `  ( R `
 k ) )
604ffvelrnda 6011 . . . . . . . 8  |-  ( (
ph  /\  k  e.  I )  ->  ( R `  k )  e. TopMnd )
6141adantr 465 . . . . . . . 8  |-  ( (
ph  /\  k  e.  I )  ->  ( TopOpen
`  Y )  e.  (TopOn `  ( Base `  Y ) ) )
6261, 61cnmpt1st 20463 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  I )  ->  (
f  e.  ( Base `  Y ) ,  g  e.  ( Base `  Y
)  |->  f )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( TopOpen `  Y
) ) )
631, 3, 2, 19, 39prdstopn 20423 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( TopOpen `  Y )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
6463adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  I )  ->  ( TopOpen
`  Y )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
6564, 61eqeltrrd 2493 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  I )  ->  ( Xt_ `  ( TopOpen  o.  R
) )  e.  (TopOn `  ( Base `  Y
) ) )
66 toponuni 19722 . . . . . . . . . . . . 13  |-  ( (
Xt_ `  ( TopOpen  o.  R
) )  e.  (TopOn `  ( Base `  Y
) )  ->  ( Base `  Y )  = 
U. ( Xt_ `  ( TopOpen  o.  R ) ) )
6765, 66syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  I )  ->  ( Base `  Y )  = 
U. ( Xt_ `  ( TopOpen  o.  R ) ) )
6867mpteq1d 4478 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  I )  ->  (
x  e.  ( Base `  Y )  |->  ( x `
 k ) )  =  ( x  e. 
U. ( Xt_ `  ( TopOpen  o.  R ) ) 
|->  ( x `  k
) ) )
692adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  I )  ->  I  e.  W )
7056adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  I )  ->  ( TopOpen  o.  R ) : I --> Top )
71 simpr 461 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  I )  ->  k  e.  I )
72 eqid 2404 . . . . . . . . . . . . 13  |-  U. ( Xt_ `  ( TopOpen  o.  R
) )  =  U. ( Xt_ `  ( TopOpen  o.  R ) )
7372, 38ptpjcn 20406 . . . . . . . . . . . 12  |-  ( ( I  e.  W  /\  ( TopOpen  o.  R ) : I --> Top  /\  k  e.  I )  ->  ( x  e.  U. ( Xt_ `  ( TopOpen  o.  R ) )  |->  ( x `  k ) )  e.  ( (
Xt_ `  ( TopOpen  o.  R
) )  Cn  (
( TopOpen  o.  R ) `  k ) ) )
7469, 70, 71, 73syl3anc 1232 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  I )  ->  (
x  e.  U. ( Xt_ `  ( TopOpen  o.  R
) )  |->  ( x `
 k ) )  e.  ( ( Xt_ `  ( TopOpen  o.  R )
)  Cn  ( (
TopOpen  o.  R ) `  k ) ) )
7568, 74eqeltrd 2492 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  I )  ->  (
x  e.  ( Base `  Y )  |->  ( x `
 k ) )  e.  ( ( Xt_ `  ( TopOpen  o.  R )
)  Cn  ( (
TopOpen  o.  R ) `  k ) ) )
7664eqcomd 2412 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  I )  ->  ( Xt_ `  ( TopOpen  o.  R
) )  =  (
TopOpen `  Y ) )
77 fvco3 5928 . . . . . . . . . . . 12  |-  ( ( R : I -->TopMnd  /\  k  e.  I )  ->  (
( TopOpen  o.  R ) `  k )  =  (
TopOpen `  ( R `  k ) ) )
784, 77sylan 471 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  I )  ->  (
( TopOpen  o.  R ) `  k )  =  (
TopOpen `  ( R `  k ) ) )
7976, 78oveq12d 6298 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  I )  ->  (
( Xt_ `  ( TopOpen  o.  R ) )  Cn  ( ( TopOpen  o.  R
) `  k )
)  =  ( (
TopOpen `  Y )  Cn  ( TopOpen `  ( R `  k ) ) ) )
8075, 79eleqtrd 2494 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  I )  ->  (
x  e.  ( Base `  Y )  |->  ( x `
 k ) )  e.  ( ( TopOpen `  Y )  Cn  ( TopOpen
`  ( R `  k ) ) ) )
81 fveq1 5850 . . . . . . . . 9  |-  ( x  =  f  ->  (
x `  k )  =  ( f `  k ) )
8261, 61, 62, 61, 80, 81cnmpt21 20466 . . . . . . . 8  |-  ( (
ph  /\  k  e.  I )  ->  (
f  e.  ( Base `  Y ) ,  g  e.  ( Base `  Y
)  |->  ( f `  k ) )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( TopOpen `  ( R `  k )
) ) )
8361, 61cnmpt2nd 20464 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  I )  ->  (
f  e.  ( Base `  Y ) ,  g  e.  ( Base `  Y
)  |->  g )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( TopOpen `  Y
) ) )
84 fveq1 5850 . . . . . . . . 9  |-  ( x  =  g  ->  (
x `  k )  =  ( g `  k ) )
8561, 61, 83, 61, 80, 84cnmpt21 20466 . . . . . . . 8  |-  ( (
ph  /\  k  e.  I )  ->  (
f  e.  ( Base `  Y ) ,  g  e.  ( Base `  Y
)  |->  ( g `  k ) )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( TopOpen `  ( R `  k )
) ) )
8658, 59, 60, 61, 61, 82, 85cnmpt2plusg 20881 . . . . . . 7  |-  ( (
ph  /\  k  e.  I )  ->  (
f  e.  ( Base `  Y ) ,  g  e.  ( Base `  Y
)  |->  ( ( f `
 k ) ( +g  `  ( R `
 k ) ) ( g `  k
) ) )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( TopOpen `  ( R `  k )
) ) )
8778oveq2d 6296 . . . . . . 7  |-  ( (
ph  /\  k  e.  I )  ->  (
( ( TopOpen `  Y
)  tX  ( TopOpen `  Y ) )  Cn  ( ( TopOpen  o.  R
) `  k )
)  =  ( ( ( TopOpen `  Y )  tX  ( TopOpen `  Y )
)  Cn  ( TopOpen `  ( R `  k ) ) ) )
8886, 87eleqtrrd 2495 . . . . . 6  |-  ( (
ph  /\  k  e.  I )  ->  (
f  e.  ( Base `  Y ) ,  g  e.  ( Base `  Y
)  |->  ( ( f `
 k ) ( +g  `  ( R `
 k ) ) ( g `  k
) ) )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( ( TopOpen  o.  R ) `  k
) ) )
8957, 88syl5eqel 2496 . . . . 5  |-  ( (
ph  /\  k  e.  I )  ->  (
z  e.  ( (
Base `  Y )  X.  ( Base `  Y
) )  |->  ( ( ( 1st `  z
) `  k )
( +g  `  ( R `
 k ) ) ( ( 2nd `  z
) `  k )
) )  e.  ( ( ( TopOpen `  Y
)  tX  ( TopOpen `  Y ) )  Cn  ( ( TopOpen  o.  R
) `  k )
) )
9038, 43, 2, 56, 89ptcn 20422 . . . 4  |-  ( ph  ->  ( z  e.  ( ( Base `  Y
)  X.  ( Base `  Y ) )  |->  ( k  e.  I  |->  ( ( ( 1st `  z
) `  k )
( +g  `  ( R `
 k ) ) ( ( 2nd `  z
) `  k )
) ) )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( Xt_ `  ( TopOpen  o.  R ) ) ) )
9137, 90eqeltrd 2492 . . 3  |-  ( ph  ->  ( +f `  Y )  e.  ( ( ( TopOpen `  Y
)  tX  ( TopOpen `  Y ) )  Cn  ( Xt_ `  ( TopOpen  o.  R ) ) ) )
9263oveq2d 6296 . . 3  |-  ( ph  ->  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( TopOpen `  Y
) )  =  ( ( ( TopOpen `  Y
)  tX  ( TopOpen `  Y ) )  Cn  ( Xt_ `  ( TopOpen  o.  R ) ) ) )
9391, 92eleqtrrd 2495 . 2  |-  ( ph  ->  ( +f `  Y )  e.  ( ( ( TopOpen `  Y
)  tX  ( TopOpen `  Y ) )  Cn  ( TopOpen `  Y )
) )
9426, 39istmd 20867 . 2  |-  ( Y  e. TopMnd 
<->  ( Y  e.  Mnd  /\  Y  e.  TopSp  /\  ( +f `  Y
)  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen `  Y )
)  Cn  ( TopOpen `  Y ) ) ) )
959, 14, 93, 94syl3anbrc 1183 1  |-  ( ph  ->  Y  e. TopMnd )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844   A.wral 2756   _Vcvv 3061    C_ wss 3416   <.cop 3980   U.cuni 4193    |-> cmpt 4455    X. cxp 4823    |` cres 4827    o. ccom 4829    Fn wfn 5566   -->wf 5567   ` cfv 5571  (class class class)co 6280    |-> cmpt2 6282   1stc1st 6784   2ndc2nd 6785   Basecbs 14843   +g cplusg 14911   TopOpenctopn 15038   Xt_cpt 15055   X_scprds 15062   +fcplusf 16195   Mndcmnd 16245   Topctop 19688  TopOnctopon 19689   TopSpctps 19691    Cn ccn 20020    tX ctx 20355  TopMndctmd 20863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-int 4230  df-iun 4275  df-iin 4276  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-oadd 7173  df-er 7350  df-map 7461  df-ixp 7510  df-en 7557  df-dom 7558  df-sdom 7559  df-fin 7560  df-fi 7907  df-sup 7937  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-nn 10579  df-2 10637  df-3 10638  df-4 10639  df-5 10640  df-6 10641  df-7 10642  df-8 10643  df-9 10644  df-10 10645  df-n0 10839  df-z 10908  df-dec 11022  df-uz 11130  df-fz 11729  df-struct 14845  df-ndx 14846  df-slot 14847  df-base 14848  df-plusg 14924  df-mulr 14925  df-sca 14927  df-vsca 14928  df-ip 14929  df-tset 14930  df-ple 14931  df-ds 14933  df-hom 14935  df-cco 14936  df-rest 15039  df-topn 15040  df-0g 15058  df-topgen 15060  df-pt 15061  df-prds 15064  df-plusf 16197  df-mgm 16198  df-sgrp 16237  df-mnd 16247  df-top 19693  df-bases 19695  df-topon 19696  df-topsp 19697  df-cn 20023  df-cnp 20024  df-tx 20357  df-tmd 20865
This theorem is referenced by:  prdstgpd  20917
  Copyright terms: Public domain W3C validator