MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdssca Structured version   Unicode version

Theorem prdssca 14377
Description: Scalar ring of a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
prdsbas.p  |-  P  =  ( S X_s R )
prdsbas.s  |-  ( ph  ->  S  e.  V )
prdsbas.r  |-  ( ph  ->  R  e.  W )
Assertion
Ref Expression
prdssca  |-  ( ph  ->  S  =  (Scalar `  P ) )

Proof of Theorem prdssca
Dummy variables  a 
c  d  e  f  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . . 4  |-  P  =  ( S X_s R )
2 eqid 2433 . . . 4  |-  ( Base `  S )  =  (
Base `  S )
3 eqidd 2434 . . . 4  |-  ( ph  ->  dom  R  =  dom  R )
4 eqidd 2434 . . . 4  |-  ( ph  -> 
X_ x  e.  dom  R ( Base `  ( R `  x )
)  =  X_ x  e.  dom  R ( Base `  ( R `  x
) ) )
5 eqidd 2434 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) ) )  =  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
6 eqidd 2434 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) )
7 eqidd 2434 . . . 4  |-  ( ph  ->  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  ( Base `  S
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) )
8 eqidd 2434 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )  =  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( S  gsumg  ( x  e.  dom  R  |->  ( ( f `  x
) ( .i `  ( R `  x ) ) ( g `  x ) ) ) ) ) )
9 eqidd 2434 . . . 4  |-  ( ph  ->  ( Xt_ `  ( TopOpen  o.  R ) )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
10 eqidd 2434 . . . 4  |-  ( ph  ->  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) }  =  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) } )
11 eqidd 2434 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  sup (
( ran  ( x  e.  dom  R  |->  ( ( f `  x ) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )  =  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  sup ( ( ran  ( x  e.  dom  R 
|->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) )
12 eqidd 2434 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x )
) ( g `  x ) ) )  =  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) )
13 eqidd 2434 . . . 4  |-  ( ph  ->  ( a  e.  (
X_ x  e.  dom  R ( Base `  ( R `  x )
)  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( c ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )  =  ( a  e.  ( X_ x  e. 
dom  R ( Base `  ( R `  x
) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( c ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) ) )
14 prdsbas.s . . . 4  |-  ( ph  ->  S  e.  V )
15 prdsbas.r . . . 4  |-  ( ph  ->  R  e.  W )
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15prdsval 14376 . . 3  |-  ( ph  ->  P  =  ( ( { <. ( Base `  ndx ) ,  X_ x  e. 
dom  R ( Base `  ( R `  x
) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) } >. , 
<. ( dist `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  sup ( ( ran  ( x  e.  dom  R 
|->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x )
) ( g `  x ) ) )
>. ,  <. (comp `  ndx ) ,  ( a  e.  ( X_ x  e.  dom  R ( Base `  ( R `  x
) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( c ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) ) )
17 eqid 2433 . . 3  |-  (Scalar `  P )  =  (Scalar `  P )
18 scaid 14282 . . 3  |- Scalar  = Slot  (Scalar ` 
ndx )
19 elex 2971 . . . 4  |-  ( S  e.  V  ->  S  e.  _V )
2014, 19syl 16 . . 3  |-  ( ph  ->  S  e.  _V )
21 snsstp1 4012 . . . . 5  |-  { <. (Scalar `  ndx ) ,  S >. }  C_  { <. (Scalar ` 
ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. }
22 ssun2 3508 . . . . 5  |-  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. }  C_  ( { <. ( Base `  ndx ) ,  X_ x  e. 
dom  R ( Base `  ( R `  x
) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )
2321, 22sstri 3353 . . . 4  |-  { <. (Scalar `  ndx ) ,  S >. }  C_  ( { <. ( Base `  ndx ) ,  X_ x  e. 
dom  R ( Base `  ( R `  x
) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )
24 ssun1 3507 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  X_ x  e. 
dom  R ( Base `  ( R `  x
) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  C_  (
( { <. ( Base `  ndx ) , 
X_ x  e.  dom  R ( Base `  ( R `  x )
) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) } >. , 
<. ( dist `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  sup ( ( ran  ( x  e.  dom  R 
|->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x )
) ( g `  x ) ) )
>. ,  <. (comp `  ndx ) ,  ( a  e.  ( X_ x  e.  dom  R ( Base `  ( R `  x
) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( c ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) )
2523, 24sstri 3353 . . 3  |-  { <. (Scalar `  ndx ) ,  S >. }  C_  ( ( { <. ( Base `  ndx ) ,  X_ x  e. 
dom  R ( Base `  ( R `  x
) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( S 
gsumg  ( x  e.  dom  R 
|->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) } >. , 
<. ( dist `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  sup ( ( ran  ( x  e.  dom  R 
|->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x )
) ( g `  x ) ) )
>. ,  <. (comp `  ndx ) ,  ( a  e.  ( X_ x  e.  dom  R ( Base `  ( R `  x
) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( c ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) )
2616, 17, 18, 20, 25prdsvallem 14375 . 2  |-  ( ph  ->  (Scalar `  P )  =  S )
2726eqcomd 2438 1  |-  ( ph  ->  S  =  (Scalar `  P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755   A.wral 2705   _Vcvv 2962    u. cun 3314    C_ wss 3316   {csn 3865   {cpr 3867   {ctp 3869   <.cop 3871   class class class wbr 4280   {copab 4337    e. cmpt 4338    X. cxp 4825   dom cdm 4827   ran crn 4828    o. ccom 4831   ` cfv 5406  (class class class)co 6080    e. cmpt2 6082   1stc1st 6564   2ndc2nd 6565   X_cixp 7251   supcsup 7678   0cc0 9270   RR*cxr 9405    < clt 9406   ndxcnx 14154   Basecbs 14157   +g cplusg 14221   .rcmulr 14222  Scalarcsca 14224   .scvsca 14225   .icip 14226  TopSetcts 14227   lecple 14228   distcds 14230   Hom chom 14232  compcco 14233   TopOpenctopn 14343   Xt_cpt 14360    gsumg cgsu 14362   X_scprds 14367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-map 7204  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-fz 11425  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-plusg 14234  df-mulr 14235  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-hom 14245  df-cco 14246  df-prds 14369
This theorem is referenced by:  pwssca  14417  xpssca  14499  xpsvsca  14500  prdslmodd  16972  dsmmlss  18011
  Copyright terms: Public domain W3C validator