MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdssca Unicode version

Theorem prdssca 13634
Description: Scalar ring of a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
prdsbas.p  |-  P  =  ( S X_s R )
prdsbas.s  |-  ( ph  ->  S  e.  V )
prdsbas.r  |-  ( ph  ->  R  e.  W )
Assertion
Ref Expression
prdssca  |-  ( ph  ->  S  =  (Scalar `  P ) )

Proof of Theorem prdssca
Dummy variables  a 
c  d  e  f  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . . 4  |-  P  =  ( S X_s R )
2 eqid 2404 . . . 4  |-  ( Base `  S )  =  (
Base `  S )
3 eqidd 2405 . . . 4  |-  ( ph  ->  dom  R  =  dom  R )
4 eqidd 2405 . . . 4  |-  ( ph  -> 
X_ x  e.  dom  R ( Base `  ( R `  x )
)  =  X_ x  e.  dom  R ( Base `  ( R `  x
) ) )
5 eqidd 2405 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) ) )  =  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
6 eqidd 2405 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) )
7 eqidd 2405 . . . 4  |-  ( ph  ->  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  ( Base `  S
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) )
8 eqidd 2405 . . . 4  |-  ( ph  ->  ( Xt_ `  ( TopOpen  o.  R ) )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
9 eqidd 2405 . . . 4  |-  ( ph  ->  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) }  =  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) } )
10 eqidd 2405 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  sup (
( ran  ( x  e.  dom  R  |->  ( ( f `  x ) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )  =  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  sup ( ( ran  ( x  e.  dom  R 
|->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) )
11 eqidd 2405 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  X_ x  e.  dom  R ( ( f `  x ) (  Hom  `  ( R `  x )
) ( g `  x ) ) )  =  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) )
12 eqidd 2405 . . . 4  |-  ( ph  ->  ( a  e.  (
X_ x  e.  dom  R ( Base `  ( R `  x )
)  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( c ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )  =  ( a  e.  ( X_ x  e. 
dom  R ( Base `  ( R `  x
) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( c ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) ) )
13 prdsbas.s . . . 4  |-  ( ph  ->  S  e.  V )
14 prdsbas.r . . . 4  |-  ( ph  ->  R  e.  W )
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14prdsval 13633 . . 3  |-  ( ph  ->  P  =  ( ( { <. ( Base `  ndx ) ,  X_ x  e. 
dom  R ( Base `  ( R `  x
) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( TopOpen  o.  R
) ) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) } >. , 
<. ( dist `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  sup ( ( ran  ( x  e.  dom  R 
|->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. (  Hom  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  X_ x  e.  dom  R ( ( f `  x ) (  Hom  `  ( R `  x )
) ( g `  x ) ) )
>. ,  <. (comp `  ndx ) ,  ( a  e.  ( X_ x  e.  dom  R ( Base `  ( R `  x
) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( c ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) ) )
16 eqid 2404 . . 3  |-  (Scalar `  P )  =  (Scalar `  P )
17 scaid 13545 . . 3  |- Scalar  = Slot  (Scalar ` 
ndx )
18 elex 2924 . . . 4  |-  ( S  e.  V  ->  S  e.  _V )
1913, 18syl 16 . . 3  |-  ( ph  ->  S  e.  _V )
20 snsspr1 3907 . . . . 5  |-  { <. (Scalar `  ndx ) ,  S >. }  C_  { <. (Scalar ` 
ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) >. }
21 ssun2 3471 . . . . 5  |-  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( f ( .s `  ( R `  x )
) ( g `  x ) ) ) ) >. }  C_  ( { <. ( Base `  ndx ) ,  X_ x  e. 
dom  R ( Base `  ( R `  x
) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) >. } )
2220, 21sstri 3317 . . . 4  |-  { <. (Scalar `  ndx ) ,  S >. }  C_  ( { <. ( Base `  ndx ) ,  X_ x  e. 
dom  R ( Base `  ( R `  x
) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) >. } )
23 ssun1 3470 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  X_ x  e. 
dom  R ( Base `  ( R `  x
) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) >. } )  C_  ( ( { <. (
Base `  ndx ) , 
X_ x  e.  dom  R ( Base `  ( R `  x )
) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( TopOpen  o.  R
) ) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) } >. , 
<. ( dist `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  sup ( ( ran  ( x  e.  dom  R 
|->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. (  Hom  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  X_ x  e.  dom  R ( ( f `  x ) (  Hom  `  ( R `  x )
) ( g `  x ) ) )
>. ,  <. (comp `  ndx ) ,  ( a  e.  ( X_ x  e.  dom  R ( Base `  ( R `  x
) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( c ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) )
2422, 23sstri 3317 . . 3  |-  { <. (Scalar `  ndx ) ,  S >. }  C_  ( ( { <. ( Base `  ndx ) ,  X_ x  e. 
dom  R ( Base `  ( R `  x
) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  ( x  e. 
dom  R  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( x  e.  dom  R  |->  ( f ( .s `  ( R `  x ) ) ( g `  x ) ) ) ) >. } )  u.  ( { <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( TopOpen  o.  R
) ) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  X_ x  e.  dom  R ( Base `  ( R `  x )
)  /\  A. x  e.  dom  R ( f `
 x ) ( le `  ( R `
 x ) ) ( g `  x
) ) } >. , 
<. ( dist `  ndx ) ,  ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  sup ( ( ran  ( x  e.  dom  R 
|->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. (  Hom  `  ndx ) ,  ( f  e.  X_ x  e.  dom  R (
Base `  ( R `  x ) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  X_ x  e.  dom  R ( ( f `  x ) (  Hom  `  ( R `  x )
) ( g `  x ) ) )
>. ,  <. (comp `  ndx ) ,  ( a  e.  ( X_ x  e.  dom  R ( Base `  ( R `  x
) )  X.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ) ,  c  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) )  |->  ( d  e.  ( c ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x
) ) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
) ,  g  e.  X_ x  e.  dom  R ( Base `  ( R `  x )
)  |->  X_ x  e.  dom  R ( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) `  a ) 
|->  ( x  e.  dom  R 
|->  ( ( d `  x ) ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  ( R `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) )
2515, 16, 17, 19, 24prdsvallem 13632 . 2  |-  ( ph  ->  (Scalar `  P )  =  S )
2625eqcomd 2409 1  |-  ( ph  ->  S  =  (Scalar `  P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916    u. cun 3278    C_ wss 3280   {csn 3774   {cpr 3775   {ctp 3776   <.cop 3777   class class class wbr 4172   {copab 4225    e. cmpt 4226    X. cxp 4835   dom cdm 4837   ran crn 4838    o. ccom 4841   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   1stc1st 6306   2ndc2nd 6307   X_cixp 7022   supcsup 7403   0cc0 8946   RR*cxr 9075    < clt 9076   ndxcnx 13421   Basecbs 13424   +g cplusg 13484   .rcmulr 13485  Scalarcsca 13487   .scvsca 13488  TopSetcts 13490   lecple 13491   distcds 13493    Hom chom 13495  compcco 13496   TopOpenctopn 13604   Xt_cpt 13621   X_scprds 13624
This theorem is referenced by:  pwssca  13673  xpssca  13758  xpsvsca  13759  prdslmodd  16000  dsmmlss  27078
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-hom 13508  df-cco 13509  df-prds 13626
  Copyright terms: Public domain W3C validator