MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsplusg Structured version   Visualization version   Unicode version

Theorem prdsplusg 15405
Description: Addition in a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
prdsbas.p  |-  P  =  ( S X_s R )
prdsbas.s  |-  ( ph  ->  S  e.  V )
prdsbas.r  |-  ( ph  ->  R  e.  W )
prdsbas.b  |-  B  =  ( Base `  P
)
prdsbas.i  |-  ( ph  ->  dom  R  =  I )
prdsplusg.b  |-  .+  =  ( +g  `  P )
Assertion
Ref Expression
prdsplusg  |-  ( ph  ->  .+  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
Distinct variable groups:    f, g, x, B    ph, f, g, x    f, I, g, x    P, f, g, x    R, f, g, x    S, f, g, x
Allowed substitution hints:    .+ ( x, f, g)    V( x, f, g)    W( x, f, g)

Proof of Theorem prdsplusg
Dummy variables  a 
c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3  |-  P  =  ( S X_s R )
2 eqid 2462 . . 3  |-  ( Base `  S )  =  (
Base `  S )
3 prdsbas.i . . 3  |-  ( ph  ->  dom  R  =  I )
4 prdsbas.s . . . 4  |-  ( ph  ->  S  e.  V )
5 prdsbas.r . . . 4  |-  ( ph  ->  R  e.  W )
6 prdsbas.b . . . 4  |-  B  =  ( Base `  P
)
71, 4, 5, 6, 3prdsbas 15404 . . 3  |-  ( ph  ->  B  =  X_ x  e.  I  ( Base `  ( R `  x
) ) )
8 eqidd 2463 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) )  =  ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
9 eqidd 2463 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) ) )
10 eqidd 2463 . . 3  |-  ( ph  ->  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) )
11 eqidd 2463 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i `  ( R `  x )
) ( g `  x ) ) ) ) ) )
12 eqidd 2463 . . 3  |-  ( ph  ->  ( Xt_ `  ( TopOpen  o.  R ) )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
13 eqidd 2463 . . 3  |-  ( ph  ->  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }  =  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) } )
14 eqidd 2463 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )  =  ( f  e.  B ,  g  e.  B  |->  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) )
15 eqidd 2463 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) )
16 eqidd 2463 . . 3  |-  ( ph  ->  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) )  =  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) )
171, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 4, 5prdsval 15402 . 2  |-  ( ph  ->  P  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) ) )
18 prdsplusg.b . 2  |-  .+  =  ( +g  `  P )
19 plusgid 15274 . 2  |-  +g  = Slot  ( +g  `  ndx )
20 ovssunirn 6344 . . . . . . . . . . 11  |-  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) )  C_  U.
ran  ( +g  `  ( R `  x )
)
2119strfvss 15188 . . . . . . . . . . . . 13  |-  ( +g  `  ( R `  x
) )  C_  U. ran  ( R `  x )
22 fvssunirn 5911 . . . . . . . . . . . . . 14  |-  ( R `
 x )  C_  U.
ran  R
23 rnss 5082 . . . . . . . . . . . . . 14  |-  ( ( R `  x ) 
C_  U. ran  R  ->  ran  ( R `  x
)  C_  ran  U. ran  R )
24 uniss 4233 . . . . . . . . . . . . . 14  |-  ( ran  ( R `  x
)  C_  ran  U. ran  R  ->  U. ran  ( R `
 x )  C_  U.
ran  U. ran  R )
2522, 23, 24mp2b 10 . . . . . . . . . . . . 13  |-  U. ran  ( R `  x ) 
C_  U. ran  U. ran  R
2621, 25sstri 3453 . . . . . . . . . . . 12  |-  ( +g  `  ( R `  x
) )  C_  U. ran  U.
ran  R
27 rnss 5082 . . . . . . . . . . . 12  |-  ( ( +g  `  ( R `
 x ) ) 
C_  U. ran  U. ran  R  ->  ran  ( +g  `  ( R `  x
) )  C_  ran  U.
ran  U. ran  R )
28 uniss 4233 . . . . . . . . . . . 12  |-  ( ran  ( +g  `  ( R `  x )
)  C_  ran  U. ran  U.
ran  R  ->  U. ran  ( +g  `  ( R `
 x ) ) 
C_  U. ran  U. ran  U.
ran  R )
2926, 27, 28mp2b 10 . . . . . . . . . . 11  |-  U. ran  ( +g  `  ( R `
 x ) ) 
C_  U. ran  U. ran  U.
ran  R
3020, 29sstri 3453 . . . . . . . . . 10  |-  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) )  C_  U.
ran  U. ran  U. ran  R
31 ovex 6343 . . . . . . . . . . 11  |-  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) )  e. 
_V
3231elpw 3969 . . . . . . . . . 10  |-  ( ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) )  e. 
~P U. ran  U. ran  U.
ran  R  <->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) )  C_  U. ran  U.
ran  U. ran  R )
3330, 32mpbir 214 . . . . . . . . 9  |-  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) )  e. 
~P U. ran  U. ran  U.
ran  R
3433a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  (
( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) )  e. 
~P U. ran  U. ran  U.
ran  R )
35 eqid 2462 . . . . . . . 8  |-  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) )  =  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) )
3634, 35fmptd 6069 . . . . . . 7  |-  ( ph  ->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) : I --> ~P U. ran  U. ran  U. ran  R )
37 rnexg 6752 . . . . . . . . . . 11  |-  ( R  e.  W  ->  ran  R  e.  _V )
38 uniexg 6615 . . . . . . . . . . 11  |-  ( ran 
R  e.  _V  ->  U.
ran  R  e.  _V )
395, 37, 383syl 18 . . . . . . . . . 10  |-  ( ph  ->  U. ran  R  e. 
_V )
40 rnexg 6752 . . . . . . . . . 10  |-  ( U. ran  R  e.  _V  ->  ran  U. ran  R  e.  _V )
41 uniexg 6615 . . . . . . . . . 10  |-  ( ran  U. ran  R  e.  _V  ->  U. ran  U. ran  R  e.  _V )
4239, 40, 413syl 18 . . . . . . . . 9  |-  ( ph  ->  U. ran  U. ran  R  e.  _V )
43 rnexg 6752 . . . . . . . . 9  |-  ( U. ran  U. ran  R  e. 
_V  ->  ran  U. ran  U. ran  R  e.  _V )
44 uniexg 6615 . . . . . . . . 9  |-  ( ran  U. ran  U. ran  R  e.  _V  ->  U. ran  U. ran  U. ran  R  e. 
_V )
45 pwexg 4601 . . . . . . . . 9  |-  ( U. ran  U. ran  U. ran  R  e.  _V  ->  ~P U.
ran  U. ran  U. ran  R  e.  _V )
4642, 43, 44, 454syl 19 . . . . . . . 8  |-  ( ph  ->  ~P U. ran  U. ran  U. ran  R  e. 
_V )
47 dmexg 6751 . . . . . . . . . 10  |-  ( R  e.  W  ->  dom  R  e.  _V )
485, 47syl 17 . . . . . . . . 9  |-  ( ph  ->  dom  R  e.  _V )
493, 48eqeltrrd 2541 . . . . . . . 8  |-  ( ph  ->  I  e.  _V )
5046, 49elmapd 7512 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) )  e.  ( ~P U. ran  U.
ran  U. ran  R  ^m  I )  <->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) : I --> ~P U. ran  U. ran  U. ran  R ) )
5136, 50mpbird 240 . . . . . 6  |-  ( ph  ->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) )  e.  ( ~P
U. ran  U. ran  U. ran  R  ^m  I ) )
5251ralrimivw 2815 . . . . 5  |-  ( ph  ->  A. g  e.  B  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) )  e.  ( ~P
U. ran  U. ran  U. ran  R  ^m  I ) )
5352ralrimivw 2815 . . . 4  |-  ( ph  ->  A. f  e.  B  A. g  e.  B  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) )  e.  ( ~P
U. ran  U. ran  U. ran  R  ^m  I ) )
54 eqid 2462 . . . . 5  |-  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) )
5554fmpt2 6887 . . . 4  |-  ( A. f  e.  B  A. g  e.  B  (
x  e.  I  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) )  e.  ( ~P U. ran  U. ran  U. ran  R  ^m  I )  <->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) ) : ( B  X.  B ) --> ( ~P
U. ran  U. ran  U. ran  R  ^m  I ) )
5653, 55sylib 201 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) ) : ( B  X.  B ) --> ( ~P U. ran  U.
ran  U. ran  R  ^m  I ) )
57 fvex 5898 . . . . . 6  |-  ( Base `  P )  e.  _V
586, 57eqeltri 2536 . . . . 5  |-  B  e. 
_V
5958, 58xpex 6622 . . . 4  |-  ( B  X.  B )  e. 
_V
60 ovex 6343 . . . 4  |-  ( ~P
U. ran  U. ran  U. ran  R  ^m  I )  e.  _V
61 fex2 6775 . . . 4  |-  ( ( ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) ) : ( B  X.  B ) --> ( ~P U. ran  U.
ran  U. ran  R  ^m  I )  /\  ( B  X.  B )  e. 
_V  /\  ( ~P U.
ran  U. ran  U. ran  R  ^m  I )  e. 
_V )  ->  (
f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) ) )  e.  _V )
6259, 60, 61mp3an23 1365 . . 3  |-  ( ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) : ( B  X.  B ) --> ( ~P U. ran  U. ran  U. ran  R  ^m  I )  ->  (
f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) ) )  e.  _V )
6356, 62syl 17 . 2  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) )  e.  _V )
64 snsstp2 4137 . . . 4  |-  { <. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }
65 ssun1 3609 . . . 4  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )
6664, 65sstri 3453 . . 3  |-  { <. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )
67 ssun1 3609 . . 3  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  C_  (
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .i
`  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) )
6866, 67sstri 3453 . 2  |-  { <. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) )
6917, 18, 19, 63, 68prdsvallem 15401 1  |-  ( ph  ->  .+  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375    = wceq 1455    e. wcel 1898   A.wral 2749   _Vcvv 3057    u. cun 3414    C_ wss 3416   ~Pcpw 3963   {csn 3980   {cpr 3982   {ctp 3984   <.cop 3986   U.cuni 4212   class class class wbr 4416   {copab 4474    |-> cmpt 4475    X. cxp 4851   dom cdm 4853   ran crn 4854    o. ccom 4857   -->wf 5597   ` cfv 5601  (class class class)co 6315    |-> cmpt2 6317   1stc1st 6818   2ndc2nd 6819    ^m cmap 7498   X_cixp 7548   supcsup 7980   0cc0 9565   RR*cxr 9700    < clt 9701   ndxcnx 15167   Basecbs 15170   +g cplusg 15239   .rcmulr 15240  Scalarcsca 15242   .scvsca 15243   .icip 15244  TopSetcts 15245   lecple 15246   distcds 15248   Hom chom 15250  compcco 15251   TopOpenctopn 15369   Xt_cpt 15386    gsumg cgsu 15388   X_scprds 15393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-cnex 9621  ax-resscn 9622  ax-1cn 9623  ax-icn 9624  ax-addcl 9625  ax-addrcl 9626  ax-mulcl 9627  ax-mulrcl 9628  ax-mulcom 9629  ax-addass 9630  ax-mulass 9631  ax-distr 9632  ax-i2m1 9633  ax-1ne0 9634  ax-1rid 9635  ax-rnegex 9636  ax-rrecex 9637  ax-cnre 9638  ax-pre-lttri 9639  ax-pre-lttrn 9640  ax-pre-ltadd 9641  ax-pre-mulgt0 9642
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-om 6720  df-1st 6820  df-2nd 6821  df-wrecs 7054  df-recs 7116  df-rdg 7154  df-1o 7208  df-oadd 7212  df-er 7389  df-map 7500  df-ixp 7549  df-en 7596  df-dom 7597  df-sdom 7598  df-fin 7599  df-sup 7982  df-pnf 9703  df-mnf 9704  df-xr 9705  df-ltxr 9706  df-le 9707  df-sub 9888  df-neg 9889  df-nn 10638  df-2 10696  df-3 10697  df-4 10698  df-5 10699  df-6 10700  df-7 10701  df-8 10702  df-9 10703  df-10 10704  df-n0 10899  df-z 10967  df-dec 11081  df-uz 11189  df-fz 11814  df-struct 15172  df-ndx 15173  df-slot 15174  df-base 15175  df-plusg 15252  df-mulr 15253  df-sca 15255  df-vsca 15256  df-ip 15257  df-tset 15258  df-ple 15259  df-ds 15261  df-hom 15263  df-cco 15264  df-prds 15395
This theorem is referenced by:  prdsmulr  15406  prdsvsca  15407  prdsip  15408  prdsle  15409  prdsds  15411  prdstset  15413  prdshom  15414  prdsco  15415  prdsplusgval  15420  prdsmgp  17887
  Copyright terms: Public domain W3C validator