MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsplusg Structured version   Unicode version

Theorem prdsplusg 14518
Description: Addition in a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
prdsbas.p  |-  P  =  ( S X_s R )
prdsbas.s  |-  ( ph  ->  S  e.  V )
prdsbas.r  |-  ( ph  ->  R  e.  W )
prdsbas.b  |-  B  =  ( Base `  P
)
prdsbas.i  |-  ( ph  ->  dom  R  =  I )
prdsplusg.b  |-  .+  =  ( +g  `  P )
Assertion
Ref Expression
prdsplusg  |-  ( ph  ->  .+  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
Distinct variable groups:    f, g, x, B    ph, f, g, x    f, I, g, x    P, f, g, x    R, f, g, x    S, f, g, x
Allowed substitution hints:    .+ ( x, f, g)    V( x, f, g)    W( x, f, g)

Proof of Theorem prdsplusg
Dummy variables  a 
c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3  |-  P  =  ( S X_s R )
2 eqid 2454 . . 3  |-  ( Base `  S )  =  (
Base `  S )
3 prdsbas.i . . 3  |-  ( ph  ->  dom  R  =  I )
4 prdsbas.s . . . 4  |-  ( ph  ->  S  e.  V )
5 prdsbas.r . . . 4  |-  ( ph  ->  R  e.  W )
6 prdsbas.b . . . 4  |-  B  =  ( Base `  P
)
71, 4, 5, 6, 3prdsbas 14517 . . 3  |-  ( ph  ->  B  =  X_ x  e.  I  ( Base `  ( R `  x
) ) )
8 eqidd 2455 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) )  =  ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
9 eqidd 2455 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) ) )
10 eqidd 2455 . . 3  |-  ( ph  ->  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) )
11 eqidd 2455 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i `  ( R `  x )
) ( g `  x ) ) ) ) ) )
12 eqidd 2455 . . 3  |-  ( ph  ->  ( Xt_ `  ( TopOpen  o.  R ) )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
13 eqidd 2455 . . 3  |-  ( ph  ->  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }  =  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) } )
14 eqidd 2455 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )  =  ( f  e.  B ,  g  e.  B  |->  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) )
15 eqidd 2455 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) )  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) )
16 eqidd 2455 . . 3  |-  ( ph  ->  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) )  =  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) )
171, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 4, 5prdsval 14515 . 2  |-  ( ph  ->  P  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) ) )
18 prdsplusg.b . 2  |-  .+  =  ( +g  `  P )
19 plusgid 14395 . 2  |-  +g  = Slot  ( +g  `  ndx )
20 ovssunirn 6229 . . . . . . . . . . 11  |-  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) )  C_  U.
ran  ( +g  `  ( R `  x )
)
2119strfvss 14313 . . . . . . . . . . . . 13  |-  ( +g  `  ( R `  x
) )  C_  U. ran  ( R `  x )
22 fvssunirn 5825 . . . . . . . . . . . . . 14  |-  ( R `
 x )  C_  U.
ran  R
23 rnss 5179 . . . . . . . . . . . . . 14  |-  ( ( R `  x ) 
C_  U. ran  R  ->  ran  ( R `  x
)  C_  ran  U. ran  R )
24 uniss 4223 . . . . . . . . . . . . . 14  |-  ( ran  ( R `  x
)  C_  ran  U. ran  R  ->  U. ran  ( R `
 x )  C_  U.
ran  U. ran  R )
2522, 23, 24mp2b 10 . . . . . . . . . . . . 13  |-  U. ran  ( R `  x ) 
C_  U. ran  U. ran  R
2621, 25sstri 3476 . . . . . . . . . . . 12  |-  ( +g  `  ( R `  x
) )  C_  U. ran  U.
ran  R
27 rnss 5179 . . . . . . . . . . . 12  |-  ( ( +g  `  ( R `
 x ) ) 
C_  U. ran  U. ran  R  ->  ran  ( +g  `  ( R `  x
) )  C_  ran  U.
ran  U. ran  R )
28 uniss 4223 . . . . . . . . . . . 12  |-  ( ran  ( +g  `  ( R `  x )
)  C_  ran  U. ran  U.
ran  R  ->  U. ran  ( +g  `  ( R `
 x ) ) 
C_  U. ran  U. ran  U.
ran  R )
2926, 27, 28mp2b 10 . . . . . . . . . . 11  |-  U. ran  ( +g  `  ( R `
 x ) ) 
C_  U. ran  U. ran  U.
ran  R
3020, 29sstri 3476 . . . . . . . . . 10  |-  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) )  C_  U.
ran  U. ran  U. ran  R
31 ovex 6228 . . . . . . . . . . 11  |-  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) )  e. 
_V
3231elpw 3977 . . . . . . . . . 10  |-  ( ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) )  e. 
~P U. ran  U. ran  U.
ran  R  <->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) )  C_  U. ran  U.
ran  U. ran  R )
3330, 32mpbir 209 . . . . . . . . 9  |-  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) )  e. 
~P U. ran  U. ran  U.
ran  R
3433a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  (
( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) )  e. 
~P U. ran  U. ran  U.
ran  R )
35 eqid 2454 . . . . . . . 8  |-  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) )  =  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) )
3634, 35fmptd 5979 . . . . . . 7  |-  ( ph  ->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) : I --> ~P U. ran  U. ran  U. ran  R )
37 rnexg 6623 . . . . . . . . . . 11  |-  ( R  e.  W  ->  ran  R  e.  _V )
38 uniexg 6490 . . . . . . . . . . 11  |-  ( ran 
R  e.  _V  ->  U.
ran  R  e.  _V )
395, 37, 383syl 20 . . . . . . . . . 10  |-  ( ph  ->  U. ran  R  e. 
_V )
40 rnexg 6623 . . . . . . . . . 10  |-  ( U. ran  R  e.  _V  ->  ran  U. ran  R  e.  _V )
41 uniexg 6490 . . . . . . . . . 10  |-  ( ran  U. ran  R  e.  _V  ->  U. ran  U. ran  R  e.  _V )
4239, 40, 413syl 20 . . . . . . . . 9  |-  ( ph  ->  U. ran  U. ran  R  e.  _V )
43 rnexg 6623 . . . . . . . . 9  |-  ( U. ran  U. ran  R  e. 
_V  ->  ran  U. ran  U. ran  R  e.  _V )
44 uniexg 6490 . . . . . . . . 9  |-  ( ran  U. ran  U. ran  R  e.  _V  ->  U. ran  U. ran  U. ran  R  e. 
_V )
45 pwexg 4587 . . . . . . . . 9  |-  ( U. ran  U. ran  U. ran  R  e.  _V  ->  ~P U.
ran  U. ran  U. ran  R  e.  _V )
4642, 43, 44, 454syl 21 . . . . . . . 8  |-  ( ph  ->  ~P U. ran  U. ran  U. ran  R  e. 
_V )
47 dmexg 6622 . . . . . . . . . 10  |-  ( R  e.  W  ->  dom  R  e.  _V )
485, 47syl 16 . . . . . . . . 9  |-  ( ph  ->  dom  R  e.  _V )
493, 48eqeltrrd 2543 . . . . . . . 8  |-  ( ph  ->  I  e.  _V )
50 elmapg 7340 . . . . . . . 8  |-  ( ( ~P U. ran  U. ran  U. ran  R  e. 
_V  /\  I  e.  _V )  ->  ( ( x  e.  I  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) )  e.  ( ~P U. ran  U. ran  U. ran  R  ^m  I )  <->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) : I --> ~P U. ran  U. ran  U. ran  R ) )
5146, 49, 50syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) )  e.  ( ~P U. ran  U.
ran  U. ran  R  ^m  I )  <->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) : I --> ~P U. ran  U. ran  U. ran  R ) )
5236, 51mpbird 232 . . . . . 6  |-  ( ph  ->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) )  e.  ( ~P
U. ran  U. ran  U. ran  R  ^m  I ) )
5352ralrimivw 2831 . . . . 5  |-  ( ph  ->  A. g  e.  B  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) )  e.  ( ~P
U. ran  U. ran  U. ran  R  ^m  I ) )
5453ralrimivw 2831 . . . 4  |-  ( ph  ->  A. f  e.  B  A. g  e.  B  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) )  e.  ( ~P
U. ran  U. ran  U. ran  R  ^m  I ) )
55 eqid 2454 . . . . 5  |-  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) )
5655fmpt2 6754 . . . 4  |-  ( A. f  e.  B  A. g  e.  B  (
x  e.  I  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) )  e.  ( ~P U. ran  U. ran  U. ran  R  ^m  I )  <->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) ) : ( B  X.  B ) --> ( ~P
U. ran  U. ran  U. ran  R  ^m  I ) )
5754, 56sylib 196 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) ) : ( B  X.  B ) --> ( ~P U. ran  U.
ran  U. ran  R  ^m  I ) )
58 fvex 5812 . . . . . 6  |-  ( Base `  P )  e.  _V
596, 58eqeltri 2538 . . . . 5  |-  B  e. 
_V
6059, 59xpex 6621 . . . 4  |-  ( B  X.  B )  e. 
_V
61 ovex 6228 . . . 4  |-  ( ~P
U. ran  U. ran  U. ran  R  ^m  I )  e.  _V
62 fex2 6645 . . . 4  |-  ( ( ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) ) : ( B  X.  B ) --> ( ~P U. ran  U.
ran  U. ran  R  ^m  I )  /\  ( B  X.  B )  e. 
_V  /\  ( ~P U.
ran  U. ran  U. ran  R  ^m  I )  e. 
_V )  ->  (
f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) ) )  e.  _V )
6360, 61, 62mp3an23 1307 . . 3  |-  ( ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) : ( B  X.  B ) --> ( ~P U. ran  U. ran  U. ran  R  ^m  I )  ->  (
f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( +g  `  ( R `  x )
) ( g `  x ) ) ) )  e.  _V )
6457, 63syl 16 . 2  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) )  e.  _V )
65 snsstp2 4136 . . . 4  |-  { <. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }
66 ssun1 3630 . . . 4  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )
6765, 66sstri 3476 . . 3  |-  { <. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )
68 ssun1 3630 . . 3  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  C_  (
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .i
`  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  ( S  gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) )
6967, 68sstri 3476 . 2  |-  { <. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( +g  `  ( R `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( S 
gsumg  ( x  e.  I  |->  ( ( f `  x ) ( .i
`  ( R `  x ) ) ( g `  x ) ) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) ( Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
( Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) )
7017, 18, 19, 64, 69prdsvallem 14514 1  |-  ( ph  ->  .+  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2799   _Vcvv 3078    u. cun 3437    C_ wss 3439   ~Pcpw 3971   {csn 3988   {cpr 3990   {ctp 3992   <.cop 3994   U.cuni 4202   class class class wbr 4403   {copab 4460    |-> cmpt 4461    X. cxp 4949   dom cdm 4951   ran crn 4952    o. ccom 4955   -->wf 5525   ` cfv 5529  (class class class)co 6203    |-> cmpt2 6205   1stc1st 6688   2ndc2nd 6689    ^m cmap 7327   X_cixp 7376   supcsup 7804   0cc0 9396   RR*cxr 9531    < clt 9532   ndxcnx 14292   Basecbs 14295   +g cplusg 14360   .rcmulr 14361  Scalarcsca 14363   .scvsca 14364   .icip 14365  TopSetcts 14366   lecple 14367   distcds 14369   Hom chom 14371  compcco 14372   TopOpenctopn 14482   Xt_cpt 14499    gsumg cgsu 14501   X_scprds 14506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-oadd 7037  df-er 7214  df-map 7329  df-ixp 7377  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-sup 7805  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-nn 10437  df-2 10494  df-3 10495  df-4 10496  df-5 10497  df-6 10498  df-7 10499  df-8 10500  df-9 10501  df-10 10502  df-n0 10694  df-z 10761  df-dec 10870  df-uz 10976  df-fz 11558  df-struct 14297  df-ndx 14298  df-slot 14299  df-base 14300  df-plusg 14373  df-mulr 14374  df-sca 14376  df-vsca 14377  df-ip 14378  df-tset 14379  df-ple 14380  df-ds 14382  df-hom 14384  df-cco 14385  df-prds 14508
This theorem is referenced by:  prdsmulr  14519  prdsvsca  14520  prdsip  14521  prdsle  14522  prdsds  14524  prdstset  14526  prdshom  14527  prdsco  14528  prdsplusgval  14533  prdsmgp  16828
  Copyright terms: Public domain W3C validator