MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmndd Structured version   Unicode version

Theorem prdsmndd 15767
Description: The product of a family of monoids is a monoid. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsmndd.y  |-  Y  =  ( S X_s R )
prdsmndd.i  |-  ( ph  ->  I  e.  W )
prdsmndd.s  |-  ( ph  ->  S  e.  V )
prdsmndd.r  |-  ( ph  ->  R : I --> Mnd )
Assertion
Ref Expression
prdsmndd  |-  ( ph  ->  Y  e.  Mnd )

Proof of Theorem prdsmndd
Dummy variables  a 
b  y  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2468 . 2  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  Y ) )
2 eqidd 2468 . 2  |-  ( ph  ->  ( +g  `  Y
)  =  ( +g  `  Y ) )
3 prdsmndd.y . . . 4  |-  Y  =  ( S X_s R )
4 eqid 2467 . . . 4  |-  ( Base `  Y )  =  (
Base `  Y )
5 eqid 2467 . . . 4  |-  ( +g  `  Y )  =  ( +g  `  Y )
6 prdsmndd.s . . . . . 6  |-  ( ph  ->  S  e.  V )
7 elex 3122 . . . . . 6  |-  ( S  e.  V  ->  S  e.  _V )
86, 7syl 16 . . . . 5  |-  ( ph  ->  S  e.  _V )
98adantr 465 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  S  e.  _V )
10 prdsmndd.i . . . . . 6  |-  ( ph  ->  I  e.  W )
11 elex 3122 . . . . . 6  |-  ( I  e.  W  ->  I  e.  _V )
1210, 11syl 16 . . . . 5  |-  ( ph  ->  I  e.  _V )
1312adantr 465 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  I  e.  _V )
14 prdsmndd.r . . . . 5  |-  ( ph  ->  R : I --> Mnd )
1514adantr 465 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  R : I --> Mnd )
16 simprl 755 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  a  e.  ( Base `  Y
) )
17 simprr 756 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  b  e.  ( Base `  Y
) )
183, 4, 5, 9, 13, 15, 16, 17prdsplusgcl 15765 . . 3  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  (
a ( +g  `  Y
) b )  e.  ( Base `  Y
) )
19183impb 1192 . 2  |-  ( (
ph  /\  a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y ) )  ->  ( a ( +g  `  Y ) b )  e.  (
Base `  Y )
)
2014ffvelrnda 6019 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  ( R `  y )  e.  Mnd )
2120adantlr 714 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  ( R `  y )  e.  Mnd )
228ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  S  e.  _V )
2312ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  I  e.  _V )
24 ffn 5729 . . . . . . . . 9  |-  ( R : I --> Mnd  ->  R  Fn  I )
2514, 24syl 16 . . . . . . . 8  |-  ( ph  ->  R  Fn  I )
2625ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  R  Fn  I )
27 simplr1 1038 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  a  e.  ( Base `  Y
) )
28 simpr 461 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  y  e.  I )
293, 4, 22, 23, 26, 27, 28prdsbasprj 14723 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
a `  y )  e.  ( Base `  ( R `  y )
) )
30 simplr2 1039 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  b  e.  ( Base `  Y
) )
313, 4, 22, 23, 26, 30, 28prdsbasprj 14723 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
b `  y )  e.  ( Base `  ( R `  y )
) )
32 simplr3 1040 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  c  e.  ( Base `  Y
) )
333, 4, 22, 23, 26, 32, 28prdsbasprj 14723 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
c `  y )  e.  ( Base `  ( R `  y )
) )
34 eqid 2467 . . . . . . 7  |-  ( Base `  ( R `  y
) )  =  (
Base `  ( R `  y ) )
35 eqid 2467 . . . . . . 7  |-  ( +g  `  ( R `  y
) )  =  ( +g  `  ( R `
 y ) )
3634, 35mndass 15734 . . . . . 6  |-  ( ( ( R `  y
)  e.  Mnd  /\  ( ( a `  y )  e.  (
Base `  ( R `  y ) )  /\  ( b `  y
)  e.  ( Base `  ( R `  y
) )  /\  (
c `  y )  e.  ( Base `  ( R `  y )
) ) )  -> 
( ( ( a `
 y ) ( +g  `  ( R `
 y ) ) ( b `  y
) ) ( +g  `  ( R `  y
) ) ( c `
 y ) )  =  ( ( a `
 y ) ( +g  `  ( R `
 y ) ) ( ( b `  y ) ( +g  `  ( R `  y
) ) ( c `
 y ) ) ) )
3721, 29, 31, 33, 36syl13anc 1230 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
( ( a `  y ) ( +g  `  ( R `  y
) ) ( b `
 y ) ) ( +g  `  ( R `  y )
) ( c `  y ) )  =  ( ( a `  y ) ( +g  `  ( R `  y
) ) ( ( b `  y ) ( +g  `  ( R `  y )
) ( c `  y ) ) ) )
383, 4, 22, 23, 26, 27, 30, 5, 28prdsplusgfval 14725 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
( a ( +g  `  Y ) b ) `
 y )  =  ( ( a `  y ) ( +g  `  ( R `  y
) ) ( b `
 y ) ) )
3938oveq1d 6297 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
( ( a ( +g  `  Y ) b ) `  y
) ( +g  `  ( R `  y )
) ( c `  y ) )  =  ( ( ( a `
 y ) ( +g  `  ( R `
 y ) ) ( b `  y
) ) ( +g  `  ( R `  y
) ) ( c `
 y ) ) )
403, 4, 22, 23, 26, 30, 32, 5, 28prdsplusgfval 14725 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
( b ( +g  `  Y ) c ) `
 y )  =  ( ( b `  y ) ( +g  `  ( R `  y
) ) ( c `
 y ) ) )
4140oveq2d 6298 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
( a `  y
) ( +g  `  ( R `  y )
) ( ( b ( +g  `  Y
) c ) `  y ) )  =  ( ( a `  y ) ( +g  `  ( R `  y
) ) ( ( b `  y ) ( +g  `  ( R `  y )
) ( c `  y ) ) ) )
4237, 39, 413eqtr4d 2518 . . . 4  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
( ( a ( +g  `  Y ) b ) `  y
) ( +g  `  ( R `  y )
) ( c `  y ) )  =  ( ( a `  y ) ( +g  `  ( R `  y
) ) ( ( b ( +g  `  Y
) c ) `  y ) ) )
4342mpteq2dva 4533 . . 3  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  ( y  e.  I  |->  ( ( ( a ( +g  `  Y ) b ) `
 y ) ( +g  `  ( R `
 y ) ) ( c `  y
) ) )  =  ( y  e.  I  |->  ( ( a `  y ) ( +g  `  ( R `  y
) ) ( ( b ( +g  `  Y
) c ) `  y ) ) ) )
448adantr 465 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  S  e.  _V )
4512adantr 465 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  I  e.  _V )
4625adantr 465 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  R  Fn  I )
47183adantr3 1157 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  ( a
( +g  `  Y ) b )  e.  (
Base `  Y )
)
48 simpr3 1004 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  c  e.  ( Base `  Y )
)
493, 4, 44, 45, 46, 47, 48, 5prdsplusgval 14724 . . 3  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  ( (
a ( +g  `  Y
) b ) ( +g  `  Y ) c )  =  ( y  e.  I  |->  ( ( ( a ( +g  `  Y ) b ) `  y
) ( +g  `  ( R `  y )
) ( c `  y ) ) ) )
50 simpr1 1002 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  a  e.  ( Base `  Y )
)
5114adantr 465 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  R :
I --> Mnd )
52 simpr2 1003 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  b  e.  ( Base `  Y )
)
533, 4, 5, 44, 45, 51, 52, 48prdsplusgcl 15765 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  ( b
( +g  `  Y ) c )  e.  (
Base `  Y )
)
543, 4, 44, 45, 46, 50, 53, 5prdsplusgval 14724 . . 3  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  ( a
( +g  `  Y ) ( b ( +g  `  Y ) c ) )  =  ( y  e.  I  |->  ( ( a `  y ) ( +g  `  ( R `  y )
) ( ( b ( +g  `  Y
) c ) `  y ) ) ) )
5543, 49, 543eqtr4d 2518 . 2  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  ( (
a ( +g  `  Y
) b ) ( +g  `  Y ) c )  =  ( a ( +g  `  Y
) ( b ( +g  `  Y ) c ) ) )
56 eqid 2467 . . . 4  |-  ( 0g  o.  R )  =  ( 0g  o.  R
)
573, 4, 5, 8, 12, 14, 56prdsidlem 15766 . . 3  |-  ( ph  ->  ( ( 0g  o.  R )  e.  (
Base `  Y )  /\  A. a  e.  (
Base `  Y )
( ( ( 0g  o.  R ) ( +g  `  Y ) a )  =  a  /\  ( a ( +g  `  Y ) ( 0g  o.  R
) )  =  a ) ) )
5857simpld 459 . 2  |-  ( ph  ->  ( 0g  o.  R
)  e.  ( Base `  Y ) )
5957simprd 463 . . . 4  |-  ( ph  ->  A. a  e.  (
Base `  Y )
( ( ( 0g  o.  R ) ( +g  `  Y ) a )  =  a  /\  ( a ( +g  `  Y ) ( 0g  o.  R
) )  =  a ) )
6059r19.21bi 2833 . . 3  |-  ( (
ph  /\  a  e.  ( Base `  Y )
)  ->  ( (
( 0g  o.  R
) ( +g  `  Y
) a )  =  a  /\  ( a ( +g  `  Y
) ( 0g  o.  R ) )  =  a ) )
6160simpld 459 . 2  |-  ( (
ph  /\  a  e.  ( Base `  Y )
)  ->  ( ( 0g  o.  R ) ( +g  `  Y ) a )  =  a )
6260simprd 463 . 2  |-  ( (
ph  /\  a  e.  ( Base `  Y )
)  ->  ( a
( +g  `  Y ) ( 0g  o.  R
) )  =  a )
631, 2, 19, 55, 58, 61, 62ismndd 15757 1  |-  ( ph  ->  Y  e.  Mnd )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113    |-> cmpt 4505    o. ccom 5003    Fn wfn 5581   -->wf 5582   ` cfv 5586  (class class class)co 6282   Basecbs 14486   +g cplusg 14551   0gc0g 14691   X_scprds 14697   Mndcmnd 15722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-fz 11669  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-plusg 14564  df-mulr 14565  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-hom 14575  df-cco 14576  df-0g 14693  df-prds 14699  df-mnd 15728
This theorem is referenced by:  prds0g  15768  pwsmnd  15769  xpsmnd  15774  prdspjmhm  15808  prdsgrpd  15979  prdscmnd  16660  prdsrngd  17045  dsmm0cl  18538  prdstmdd  20357
  Copyright terms: Public domain W3C validator