MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmndd Structured version   Unicode version

Theorem prdsmndd 15565
Description: The product of a family of monoids is a monoid. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsmndd.y  |-  Y  =  ( S X_s R )
prdsmndd.i  |-  ( ph  ->  I  e.  W )
prdsmndd.s  |-  ( ph  ->  S  e.  V )
prdsmndd.r  |-  ( ph  ->  R : I --> Mnd )
Assertion
Ref Expression
prdsmndd  |-  ( ph  ->  Y  e.  Mnd )

Proof of Theorem prdsmndd
Dummy variables  a 
b  y  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2452 . 2  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  Y ) )
2 eqidd 2452 . 2  |-  ( ph  ->  ( +g  `  Y
)  =  ( +g  `  Y ) )
3 prdsmndd.y . . . 4  |-  Y  =  ( S X_s R )
4 eqid 2451 . . . 4  |-  ( Base `  Y )  =  (
Base `  Y )
5 eqid 2451 . . . 4  |-  ( +g  `  Y )  =  ( +g  `  Y )
6 prdsmndd.s . . . . . 6  |-  ( ph  ->  S  e.  V )
7 elex 3080 . . . . . 6  |-  ( S  e.  V  ->  S  e.  _V )
86, 7syl 16 . . . . 5  |-  ( ph  ->  S  e.  _V )
98adantr 465 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  S  e.  _V )
10 prdsmndd.i . . . . . 6  |-  ( ph  ->  I  e.  W )
11 elex 3080 . . . . . 6  |-  ( I  e.  W  ->  I  e.  _V )
1210, 11syl 16 . . . . 5  |-  ( ph  ->  I  e.  _V )
1312adantr 465 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  I  e.  _V )
14 prdsmndd.r . . . . 5  |-  ( ph  ->  R : I --> Mnd )
1514adantr 465 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  R : I --> Mnd )
16 simprl 755 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  a  e.  ( Base `  Y
) )
17 simprr 756 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  b  e.  ( Base `  Y
) )
183, 4, 5, 9, 13, 15, 16, 17prdsplusgcl 15563 . . 3  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  (
a ( +g  `  Y
) b )  e.  ( Base `  Y
) )
19183impb 1184 . 2  |-  ( (
ph  /\  a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y ) )  ->  ( a ( +g  `  Y ) b )  e.  (
Base `  Y )
)
2014ffvelrnda 5945 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  ( R `  y )  e.  Mnd )
2120adantlr 714 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  ( R `  y )  e.  Mnd )
228ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  S  e.  _V )
2312ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  I  e.  _V )
24 ffn 5660 . . . . . . . . 9  |-  ( R : I --> Mnd  ->  R  Fn  I )
2514, 24syl 16 . . . . . . . 8  |-  ( ph  ->  R  Fn  I )
2625ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  R  Fn  I )
27 simplr1 1030 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  a  e.  ( Base `  Y
) )
28 simpr 461 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  y  e.  I )
293, 4, 22, 23, 26, 27, 28prdsbasprj 14521 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
a `  y )  e.  ( Base `  ( R `  y )
) )
30 simplr2 1031 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  b  e.  ( Base `  Y
) )
313, 4, 22, 23, 26, 30, 28prdsbasprj 14521 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
b `  y )  e.  ( Base `  ( R `  y )
) )
32 simplr3 1032 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  c  e.  ( Base `  Y
) )
333, 4, 22, 23, 26, 32, 28prdsbasprj 14521 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
c `  y )  e.  ( Base `  ( R `  y )
) )
34 eqid 2451 . . . . . . 7  |-  ( Base `  ( R `  y
) )  =  (
Base `  ( R `  y ) )
35 eqid 2451 . . . . . . 7  |-  ( +g  `  ( R `  y
) )  =  ( +g  `  ( R `
 y ) )
3634, 35mndass 15532 . . . . . 6  |-  ( ( ( R `  y
)  e.  Mnd  /\  ( ( a `  y )  e.  (
Base `  ( R `  y ) )  /\  ( b `  y
)  e.  ( Base `  ( R `  y
) )  /\  (
c `  y )  e.  ( Base `  ( R `  y )
) ) )  -> 
( ( ( a `
 y ) ( +g  `  ( R `
 y ) ) ( b `  y
) ) ( +g  `  ( R `  y
) ) ( c `
 y ) )  =  ( ( a `
 y ) ( +g  `  ( R `
 y ) ) ( ( b `  y ) ( +g  `  ( R `  y
) ) ( c `
 y ) ) ) )
3721, 29, 31, 33, 36syl13anc 1221 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
( ( a `  y ) ( +g  `  ( R `  y
) ) ( b `
 y ) ) ( +g  `  ( R `  y )
) ( c `  y ) )  =  ( ( a `  y ) ( +g  `  ( R `  y
) ) ( ( b `  y ) ( +g  `  ( R `  y )
) ( c `  y ) ) ) )
383, 4, 22, 23, 26, 27, 30, 5, 28prdsplusgfval 14523 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
( a ( +g  `  Y ) b ) `
 y )  =  ( ( a `  y ) ( +g  `  ( R `  y
) ) ( b `
 y ) ) )
3938oveq1d 6208 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
( ( a ( +g  `  Y ) b ) `  y
) ( +g  `  ( R `  y )
) ( c `  y ) )  =  ( ( ( a `
 y ) ( +g  `  ( R `
 y ) ) ( b `  y
) ) ( +g  `  ( R `  y
) ) ( c `
 y ) ) )
403, 4, 22, 23, 26, 30, 32, 5, 28prdsplusgfval 14523 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
( b ( +g  `  Y ) c ) `
 y )  =  ( ( b `  y ) ( +g  `  ( R `  y
) ) ( c `
 y ) ) )
4140oveq2d 6209 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
( a `  y
) ( +g  `  ( R `  y )
) ( ( b ( +g  `  Y
) c ) `  y ) )  =  ( ( a `  y ) ( +g  `  ( R `  y
) ) ( ( b `  y ) ( +g  `  ( R `  y )
) ( c `  y ) ) ) )
4237, 39, 413eqtr4d 2502 . . . 4  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
( ( a ( +g  `  Y ) b ) `  y
) ( +g  `  ( R `  y )
) ( c `  y ) )  =  ( ( a `  y ) ( +g  `  ( R `  y
) ) ( ( b ( +g  `  Y
) c ) `  y ) ) )
4342mpteq2dva 4479 . . 3  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  ( y  e.  I  |->  ( ( ( a ( +g  `  Y ) b ) `
 y ) ( +g  `  ( R `
 y ) ) ( c `  y
) ) )  =  ( y  e.  I  |->  ( ( a `  y ) ( +g  `  ( R `  y
) ) ( ( b ( +g  `  Y
) c ) `  y ) ) ) )
448adantr 465 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  S  e.  _V )
4512adantr 465 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  I  e.  _V )
4625adantr 465 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  R  Fn  I )
47183adantr3 1149 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  ( a
( +g  `  Y ) b )  e.  (
Base `  Y )
)
48 simpr3 996 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  c  e.  ( Base `  Y )
)
493, 4, 44, 45, 46, 47, 48, 5prdsplusgval 14522 . . 3  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  ( (
a ( +g  `  Y
) b ) ( +g  `  Y ) c )  =  ( y  e.  I  |->  ( ( ( a ( +g  `  Y ) b ) `  y
) ( +g  `  ( R `  y )
) ( c `  y ) ) ) )
50 simpr1 994 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  a  e.  ( Base `  Y )
)
5114adantr 465 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  R :
I --> Mnd )
52 simpr2 995 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  b  e.  ( Base `  Y )
)
533, 4, 5, 44, 45, 51, 52, 48prdsplusgcl 15563 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  ( b
( +g  `  Y ) c )  e.  (
Base `  Y )
)
543, 4, 44, 45, 46, 50, 53, 5prdsplusgval 14522 . . 3  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  ( a
( +g  `  Y ) ( b ( +g  `  Y ) c ) )  =  ( y  e.  I  |->  ( ( a `  y ) ( +g  `  ( R `  y )
) ( ( b ( +g  `  Y
) c ) `  y ) ) ) )
5543, 49, 543eqtr4d 2502 . 2  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  ( (
a ( +g  `  Y
) b ) ( +g  `  Y ) c )  =  ( a ( +g  `  Y
) ( b ( +g  `  Y ) c ) ) )
56 eqid 2451 . . . 4  |-  ( 0g  o.  R )  =  ( 0g  o.  R
)
573, 4, 5, 8, 12, 14, 56prdsidlem 15564 . . 3  |-  ( ph  ->  ( ( 0g  o.  R )  e.  (
Base `  Y )  /\  A. a  e.  (
Base `  Y )
( ( ( 0g  o.  R ) ( +g  `  Y ) a )  =  a  /\  ( a ( +g  `  Y ) ( 0g  o.  R
) )  =  a ) ) )
5857simpld 459 . 2  |-  ( ph  ->  ( 0g  o.  R
)  e.  ( Base `  Y ) )
5957simprd 463 . . . 4  |-  ( ph  ->  A. a  e.  (
Base `  Y )
( ( ( 0g  o.  R ) ( +g  `  Y ) a )  =  a  /\  ( a ( +g  `  Y ) ( 0g  o.  R
) )  =  a ) )
6059r19.21bi 2913 . . 3  |-  ( (
ph  /\  a  e.  ( Base `  Y )
)  ->  ( (
( 0g  o.  R
) ( +g  `  Y
) a )  =  a  /\  ( a ( +g  `  Y
) ( 0g  o.  R ) )  =  a ) )
6160simpld 459 . 2  |-  ( (
ph  /\  a  e.  ( Base `  Y )
)  ->  ( ( 0g  o.  R ) ( +g  `  Y ) a )  =  a )
6260simprd 463 . 2  |-  ( (
ph  /\  a  e.  ( Base `  Y )
)  ->  ( a
( +g  `  Y ) ( 0g  o.  R
) )  =  a )
631, 2, 19, 55, 58, 61, 62ismndd 15555 1  |-  ( ph  ->  Y  e.  Mnd )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2795   _Vcvv 3071    |-> cmpt 4451    o. ccom 4945    Fn wfn 5514   -->wf 5515   ` cfv 5519  (class class class)co 6193   Basecbs 14285   +g cplusg 14349   0gc0g 14489   X_scprds 14495   Mndcmnd 15520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-1st 6680  df-2nd 6681  df-recs 6935  df-rdg 6969  df-1o 7023  df-oadd 7027  df-er 7204  df-map 7319  df-ixp 7367  df-en 7414  df-dom 7415  df-sdom 7416  df-fin 7417  df-sup 7795  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-nn 10427  df-2 10484  df-3 10485  df-4 10486  df-5 10487  df-6 10488  df-7 10489  df-8 10490  df-9 10491  df-10 10492  df-n0 10684  df-z 10751  df-dec 10860  df-uz 10966  df-fz 11548  df-struct 14287  df-ndx 14288  df-slot 14289  df-base 14290  df-plusg 14362  df-mulr 14363  df-sca 14365  df-vsca 14366  df-ip 14367  df-tset 14368  df-ple 14369  df-ds 14371  df-hom 14373  df-cco 14374  df-0g 14491  df-prds 14497  df-mnd 15526
This theorem is referenced by:  prds0g  15566  pwsmnd  15567  xpsmnd  15572  prdspjmhm  15606  prdsgrpd  15775  prdscmnd  16456  prdsrngd  16819  dsmm0cl  18283  prdstmdd  19819
  Copyright terms: Public domain W3C validator