MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmgp Unicode version

Theorem prdsmgp 15671
Description: The multiplicative monoid of a product is the product of the multiplicative monoids of the factors. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
prdsmgp.y  |-  Y  =  ( S X_s R )
prdsmgp.m  |-  M  =  (mulGrp `  Y )
prdsmgp.z  |-  Z  =  ( S X_s (mulGrp  o.  R )
)
prdsmgp.i  |-  ( ph  ->  I  e.  V )
prdsmgp.s  |-  ( ph  ->  S  e.  W )
prdsmgp.r  |-  ( ph  ->  R  Fn  I )
Assertion
Ref Expression
prdsmgp  |-  ( ph  ->  ( ( Base `  M
)  =  ( Base `  Z )  /\  ( +g  `  M )  =  ( +g  `  Z
) ) )

Proof of Theorem prdsmgp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2404 . . . . . 6  |-  (mulGrp `  ( R `  x ) )  =  (mulGrp `  ( R `  x ) )
2 eqid 2404 . . . . . 6  |-  ( Base `  ( R `  x
) )  =  (
Base `  ( R `  x ) )
31, 2mgpbas 15609 . . . . 5  |-  ( Base `  ( R `  x
) )  =  (
Base `  (mulGrp `  ( R `  x )
) )
4 prdsmgp.r . . . . . . . 8  |-  ( ph  ->  R  Fn  I )
5 fvco2 5757 . . . . . . . 8  |-  ( ( R  Fn  I  /\  x  e.  I )  ->  ( (mulGrp  o.  R
) `  x )  =  (mulGrp `  ( R `  x ) ) )
64, 5sylan 458 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  (
(mulGrp  o.  R ) `  x )  =  (mulGrp `  ( R `  x
) ) )
76eqcomd 2409 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  (mulGrp `  ( R `  x
) )  =  ( (mulGrp  o.  R ) `  x ) )
87fveq2d 5691 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( Base `  (mulGrp `  ( R `  x )
) )  =  (
Base `  ( (mulGrp  o.  R ) `  x
) ) )
93, 8syl5eq 2448 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ( Base `  ( R `  x ) )  =  ( Base `  (
(mulGrp  o.  R ) `  x ) ) )
109ixpeq2dva 7036 . . 3  |-  ( ph  -> 
X_ x  e.  I 
( Base `  ( R `  x ) )  = 
X_ x  e.  I 
( Base `  ( (mulGrp  o.  R ) `  x
) ) )
11 prdsmgp.y . . . 4  |-  Y  =  ( S X_s R )
12 prdsmgp.m . . . . . 6  |-  M  =  (mulGrp `  Y )
13 eqid 2404 . . . . . 6  |-  ( Base `  Y )  =  (
Base `  Y )
1412, 13mgpbas 15609 . . . . 5  |-  ( Base `  Y )  =  (
Base `  M )
1514eqcomi 2408 . . . 4  |-  ( Base `  M )  =  (
Base `  Y )
16 prdsmgp.s . . . 4  |-  ( ph  ->  S  e.  W )
17 prdsmgp.i . . . 4  |-  ( ph  ->  I  e.  V )
1811, 15, 16, 17, 4prdsbas2 13646 . . 3  |-  ( ph  ->  ( Base `  M
)  =  X_ x  e.  I  ( Base `  ( R `  x
) ) )
19 prdsmgp.z . . . 4  |-  Z  =  ( S X_s (mulGrp  o.  R )
)
20 eqid 2404 . . . 4  |-  ( Base `  Z )  =  (
Base `  Z )
21 fnmgp 15605 . . . . . 6  |- mulGrp  Fn  _V
2221a1i 11 . . . . 5  |-  ( ph  -> mulGrp 
Fn  _V )
23 ssv 3328 . . . . . 6  |-  ran  R  C_ 
_V
2423a1i 11 . . . . 5  |-  ( ph  ->  ran  R  C_  _V )
25 fnco 5512 . . . . 5  |-  ( (mulGrp 
Fn  _V  /\  R  Fn  I  /\  ran  R  C_  _V )  ->  (mulGrp  o.  R )  Fn  I
)
2622, 4, 24, 25syl3anc 1184 . . . 4  |-  ( ph  ->  (mulGrp  o.  R )  Fn  I )
2719, 20, 16, 17, 26prdsbas2 13646 . . 3  |-  ( ph  ->  ( Base `  Z
)  =  X_ x  e.  I  ( Base `  ( (mulGrp  o.  R
) `  x )
) )
2810, 18, 273eqtr4d 2446 . 2  |-  ( ph  ->  ( Base `  M
)  =  ( Base `  Z ) )
29 eqid 2404 . . . 4  |-  ( .r
`  Y )  =  ( .r `  Y
)
3012, 29mgpplusg 15607 . . 3  |-  ( .r
`  Y )  =  ( +g  `  M
)
31 eqid 2404 . . . . . . . . 9  |-  (mulGrp `  ( R `  z ) )  =  (mulGrp `  ( R `  z ) )
32 eqid 2404 . . . . . . . . 9  |-  ( .r
`  ( R `  z ) )  =  ( .r `  ( R `  z )
)
3331, 32mgpplusg 15607 . . . . . . . 8  |-  ( .r
`  ( R `  z ) )  =  ( +g  `  (mulGrp `  ( R `  z
) ) )
34 fvco2 5757 . . . . . . . . . . 11  |-  ( ( R  Fn  I  /\  z  e.  I )  ->  ( (mulGrp  o.  R
) `  z )  =  (mulGrp `  ( R `  z ) ) )
354, 34sylan 458 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  I )  ->  (
(mulGrp  o.  R ) `  z )  =  (mulGrp `  ( R `  z
) ) )
3635eqcomd 2409 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  I )  ->  (mulGrp `  ( R `  z
) )  =  ( (mulGrp  o.  R ) `  z ) )
3736fveq2d 5691 . . . . . . . 8  |-  ( (
ph  /\  z  e.  I )  ->  ( +g  `  (mulGrp `  ( R `  z )
) )  =  ( +g  `  ( (mulGrp 
o.  R ) `  z ) ) )
3833, 37syl5eq 2448 . . . . . . 7  |-  ( (
ph  /\  z  e.  I )  ->  ( .r `  ( R `  z ) )  =  ( +g  `  (
(mulGrp  o.  R ) `  z ) ) )
3938oveqd 6057 . . . . . 6  |-  ( (
ph  /\  z  e.  I )  ->  (
( x `  z
) ( .r `  ( R `  z ) ) ( y `  z ) )  =  ( ( x `  z ) ( +g  `  ( (mulGrp  o.  R
) `  z )
) ( y `  z ) ) )
4039mpteq2dva 4255 . . . . 5  |-  ( ph  ->  ( z  e.  I  |->  ( ( x `  z ) ( .r
`  ( R `  z ) ) ( y `  z ) ) )  =  ( z  e.  I  |->  ( ( x `  z
) ( +g  `  (
(mulGrp  o.  R ) `  z ) ) ( y `  z ) ) ) )
4128, 28, 40mpt2eq123dv 6095 . . . 4  |-  ( ph  ->  ( x  e.  (
Base `  M ) ,  y  e.  ( Base `  M )  |->  ( z  e.  I  |->  ( ( x `  z
) ( .r `  ( R `  z ) ) ( y `  z ) ) ) )  =  ( x  e.  ( Base `  Z
) ,  y  e.  ( Base `  Z
)  |->  ( z  e.  I  |->  ( ( x `
 z ) ( +g  `  ( (mulGrp 
o.  R ) `  z ) ) ( y `  z ) ) ) ) )
42 fnex 5920 . . . . . 6  |-  ( ( R  Fn  I  /\  I  e.  V )  ->  R  e.  _V )
434, 17, 42syl2anc 643 . . . . 5  |-  ( ph  ->  R  e.  _V )
44 fndm 5503 . . . . . 6  |-  ( R  Fn  I  ->  dom  R  =  I )
454, 44syl 16 . . . . 5  |-  ( ph  ->  dom  R  =  I )
4611, 16, 43, 15, 45, 29prdsmulr 13637 . . . 4  |-  ( ph  ->  ( .r `  Y
)  =  ( x  e.  ( Base `  M
) ,  y  e.  ( Base `  M
)  |->  ( z  e.  I  |->  ( ( x `
 z ) ( .r `  ( R `
 z ) ) ( y `  z
) ) ) ) )
47 fnex 5920 . . . . . 6  |-  ( ( (mulGrp  o.  R )  Fn  I  /\  I  e.  V )  ->  (mulGrp  o.  R )  e.  _V )
4826, 17, 47syl2anc 643 . . . . 5  |-  ( ph  ->  (mulGrp  o.  R )  e.  _V )
49 fndm 5503 . . . . . 6  |-  ( (mulGrp 
o.  R )  Fn  I  ->  dom  (mulGrp  o.  R )  =  I )
5026, 49syl 16 . . . . 5  |-  ( ph  ->  dom  (mulGrp  o.  R
)  =  I )
51 eqid 2404 . . . . 5  |-  ( +g  `  Z )  =  ( +g  `  Z )
5219, 16, 48, 20, 50, 51prdsplusg 13636 . . . 4  |-  ( ph  ->  ( +g  `  Z
)  =  ( x  e.  ( Base `  Z
) ,  y  e.  ( Base `  Z
)  |->  ( z  e.  I  |->  ( ( x `
 z ) ( +g  `  ( (mulGrp 
o.  R ) `  z ) ) ( y `  z ) ) ) ) )
5341, 46, 523eqtr4d 2446 . . 3  |-  ( ph  ->  ( .r `  Y
)  =  ( +g  `  Z ) )
5430, 53syl5eqr 2450 . 2  |-  ( ph  ->  ( +g  `  M
)  =  ( +g  `  Z ) )
5528, 54jca 519 1  |-  ( ph  ->  ( ( Base `  M
)  =  ( Base `  Z )  /\  ( +g  `  M )  =  ( +g  `  Z
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916    C_ wss 3280    e. cmpt 4226   dom cdm 4837   ran crn 4838    o. ccom 4841    Fn wfn 5408   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   X_cixp 7022   Basecbs 13424   +g cplusg 13484   .rcmulr 13485   X_scprds 13624  mulGrpcmgp 15603
This theorem is referenced by:  prdsrngd  15673  prdscrngd  15674  prds1  15675  pwsmgp  15679
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-hom 13508  df-cco 13509  df-prds 13626  df-mgp 15604
  Copyright terms: Public domain W3C validator