MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmet Structured version   Unicode version

Theorem prdsmet 20061
Description: The product metric is a metric when the index set is finite. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsmet.y  |-  Y  =  ( S X_s ( x  e.  I  |->  R ) )
prdsmet.b  |-  B  =  ( Base `  Y
)
prdsmet.v  |-  V  =  ( Base `  R
)
prdsmet.e  |-  E  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
prdsmet.d  |-  D  =  ( dist `  Y
)
prdsmet.s  |-  ( ph  ->  S  e.  W )
prdsmet.i  |-  ( ph  ->  I  e.  Fin )
prdsmet.r  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Z )
prdsmet.m  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( Met `  V
) )
Assertion
Ref Expression
prdsmet  |-  ( ph  ->  D  e.  ( Met `  B ) )
Distinct variable groups:    x, I    ph, x
Allowed substitution hints:    B( x)    D( x)    R( x)    S( x)    E( x)    V( x)    W( x)    Y( x)    Z( x)

Proof of Theorem prdsmet
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsmet.y . . 3  |-  Y  =  ( S X_s ( x  e.  I  |->  R ) )
2 prdsmet.b . . 3  |-  B  =  ( Base `  Y
)
3 prdsmet.v . . 3  |-  V  =  ( Base `  R
)
4 prdsmet.e . . 3  |-  E  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
5 prdsmet.d . . 3  |-  D  =  ( dist `  Y
)
6 prdsmet.s . . 3  |-  ( ph  ->  S  e.  W )
7 prdsmet.i . . 3  |-  ( ph  ->  I  e.  Fin )
8 prdsmet.r . . 3  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Z )
9 prdsmet.m . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( Met `  V
) )
10 metxmet 20025 . . . 4  |-  ( E  e.  ( Met `  V
)  ->  E  e.  ( *Met `  V
) )
119, 10syl 16 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( *Met `  V ) )
121, 2, 3, 4, 5, 6, 7, 8, 11prdsxmet 20060 . 2  |-  ( ph  ->  D  e.  ( *Met `  B ) )
131, 2, 3, 4, 5, 6, 7, 8, 11prdsdsf 20058 . . . 4  |-  ( ph  ->  D : ( B  X.  B ) --> ( 0 [,] +oo )
)
14 ffn 5657 . . . 4  |-  ( D : ( B  X.  B ) --> ( 0 [,] +oo )  ->  D  Fn  ( B  X.  B ) )
1513, 14syl 16 . . 3  |-  ( ph  ->  D  Fn  ( B  X.  B ) )
166adantr 465 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  S  e.  W )
177adantr 465 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  I  e.  Fin )
188ralrimiva 2822 . . . . . . 7  |-  ( ph  ->  A. x  e.  I  R  e.  Z )
1918adantr 465 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I  R  e.  Z )
20 simprl 755 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  e.  B )
21 simprr 756 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  e.  B )
221, 2, 16, 17, 19, 20, 21, 3, 4, 5prdsdsval3 14525 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f D g )  =  sup (
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
231, 2, 16, 17, 19, 3, 20prdsbascl 14523 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I 
( f `  x
)  e.  V )
241, 2, 16, 17, 19, 3, 21prdsbascl 14523 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I 
( g `  x
)  e.  V )
25 r19.26 2945 . . . . . . . . . . 11  |-  ( A. x  e.  I  (
( f `  x
)  e.  V  /\  ( g `  x
)  e.  V )  <-> 
( A. x  e.  I  ( f `  x )  e.  V  /\  A. x  e.  I 
( g `  x
)  e.  V ) )
26 metcl 20023 . . . . . . . . . . . . . . 15  |-  ( ( E  e.  ( Met `  V )  /\  (
f `  x )  e.  V  /\  (
g `  x )  e.  V )  ->  (
( f `  x
) E ( g `
 x ) )  e.  RR )
27263expib 1191 . . . . . . . . . . . . . 14  |-  ( E  e.  ( Met `  V
)  ->  ( (
( f `  x
)  e.  V  /\  ( g `  x
)  e.  V )  ->  ( ( f `
 x ) E ( g `  x
) )  e.  RR ) )
289, 27syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  I )  ->  (
( ( f `  x )  e.  V  /\  ( g `  x
)  e.  V )  ->  ( ( f `
 x ) E ( g `  x
) )  e.  RR ) )
2928ralimdva 2824 . . . . . . . . . . . 12  |-  ( ph  ->  ( A. x  e.  I  ( ( f `
 x )  e.  V  /\  ( g `
 x )  e.  V )  ->  A. x  e.  I  ( (
f `  x ) E ( g `  x ) )  e.  RR ) )
3029adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( A. x  e.  I  ( ( f `
 x )  e.  V  /\  ( g `
 x )  e.  V )  ->  A. x  e.  I  ( (
f `  x ) E ( g `  x ) )  e.  RR ) )
3125, 30syl5bir 218 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( ( A. x  e.  I  ( f `  x )  e.  V  /\  A. x  e.  I 
( g `  x
)  e.  V )  ->  A. x  e.  I 
( ( f `  x ) E ( g `  x ) )  e.  RR ) )
3223, 24, 31mp2and 679 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I 
( ( f `  x ) E ( g `  x ) )  e.  RR )
33 eqid 2451 . . . . . . . . . 10  |-  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  =  ( x  e.  I  |->  ( ( f `
 x ) E ( g `  x
) ) )
3433fmpt 5963 . . . . . . . . 9  |-  ( A. x  e.  I  (
( f `  x
) E ( g `
 x ) )  e.  RR  <->  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) ) : I --> RR )
3532, 34sylib 196 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) ) : I --> RR )
36 frn 5663 . . . . . . . 8  |-  ( ( x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) ) : I --> RR  ->  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  C_  RR )
3735, 36syl 16 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  C_  RR )
38 0red 9488 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
0  e.  RR )
3938snssd 4116 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  { 0 }  C_  RR )
4037, 39unssd 3630 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  C_  RR )
41 xrltso 11219 . . . . . . . 8  |-  <  Or  RR*
4241a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  <  Or  RR* )
43 mptfi 7711 . . . . . . . . 9  |-  ( I  e.  Fin  ->  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  e.  Fin )
44 rnfi 7697 . . . . . . . . 9  |-  ( ( x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  e.  Fin  ->  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  e.  Fin )
4517, 43, 443syl 20 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  e.  Fin )
46 snfi 7490 . . . . . . . 8  |-  { 0 }  e.  Fin
47 unfi 7680 . . . . . . . 8  |-  ( ( ran  ( x  e.  I  |->  ( ( f `
 x ) E ( g `  x
) ) )  e. 
Fin  /\  { 0 }  e.  Fin )  ->  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  e.  Fin )
4845, 46, 47sylancl 662 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  e.  Fin )
49 ssun2 3618 . . . . . . . . 9  |-  { 0 }  C_  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } )
50 c0ex 9481 . . . . . . . . . 10  |-  0  e.  _V
5150snss 4097 . . . . . . . . 9  |-  ( 0  e.  ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } )  <->  { 0 }  C_  ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } ) )
5249, 51mpbir 209 . . . . . . . 8  |-  0  e.  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )
53 ne0i 3741 . . . . . . . 8  |-  ( 0  e.  ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } )  ->  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } )  =/=  (/) )
5452, 53mp1i 12 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  =/=  (/) )
55 ressxr 9528 . . . . . . . 8  |-  RR  C_  RR*
5640, 55syl6ss 3466 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  C_  RR* )
57 fisupcl 7818 . . . . . . 7  |-  ( (  <  Or  RR*  /\  (
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  e.  Fin  /\  ( ran  ( x  e.  I  |->  ( ( f `
 x ) E ( g `  x
) ) )  u. 
{ 0 } )  =/=  (/)  /\  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } )  C_  RR* ) )  ->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  e.  ( ran  ( x  e.  I  |->  ( ( f `
 x ) E ( g `  x
) ) )  u. 
{ 0 } ) )
5842, 48, 54, 56, 57syl13anc 1221 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  e.  ( ran  ( x  e.  I  |->  ( ( f `
 x ) E ( g `  x
) ) )  u. 
{ 0 } ) )
5940, 58sseldd 3455 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  e.  RR )
6022, 59eqeltrd 2539 . . . 4  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f D g )  e.  RR )
6160ralrimivva 2904 . . 3  |-  ( ph  ->  A. f  e.  B  A. g  e.  B  ( f D g )  e.  RR )
62 ffnov 6294 . . 3  |-  ( D : ( B  X.  B ) --> RR  <->  ( D  Fn  ( B  X.  B
)  /\  A. f  e.  B  A. g  e.  B  ( f D g )  e.  RR ) )
6315, 61, 62sylanbrc 664 . 2  |-  ( ph  ->  D : ( B  X.  B ) --> RR )
64 ismet2 20024 . 2  |-  ( D  e.  ( Met `  B
)  <->  ( D  e.  ( *Met `  B )  /\  D : ( B  X.  B ) --> RR ) )
6512, 63, 64sylanbrc 664 1  |-  ( ph  ->  D  e.  ( Met `  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2644   A.wral 2795    u. cun 3424    C_ wss 3426   (/)c0 3735   {csn 3975    |-> cmpt 4448    Or wor 4738    X. cxp 4936   ran crn 4939    |` cres 4940    Fn wfn 5511   -->wf 5512   ` cfv 5516  (class class class)co 6190   Fincfn 7410   supcsup 7791   RRcr 9382   0cc0 9383   +oocpnf 9516   RR*cxr 9518    < clt 9519   [,]cicc 11404   Basecbs 14276   distcds 14349   X_scprds 14486   *Metcxmt 17910   Metcme 17911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460  ax-pre-sup 9461
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-1o 7020  df-oadd 7024  df-er 7201  df-map 7316  df-ixp 7364  df-en 7411  df-dom 7412  df-sdom 7413  df-fin 7414  df-sup 7792  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-div 10095  df-nn 10424  df-2 10481  df-3 10482  df-4 10483  df-5 10484  df-6 10485  df-7 10486  df-8 10487  df-9 10488  df-10 10489  df-n0 10681  df-z 10748  df-dec 10857  df-uz 10963  df-rp 11093  df-xneg 11190  df-xadd 11191  df-xmul 11192  df-icc 11408  df-fz 11539  df-struct 14278  df-ndx 14279  df-slot 14280  df-base 14281  df-plusg 14353  df-mulr 14354  df-sca 14356  df-vsca 14357  df-ip 14358  df-tset 14359  df-ple 14360  df-ds 14362  df-hom 14364  df-cco 14365  df-prds 14488  df-xmet 17919  df-met 17920
This theorem is referenced by:  xpsmet  20073  prdsmslem1  20218  prdsbnd  28830  prdstotbnd  28831  prdsbnd2  28832  repwsmet  28871
  Copyright terms: Public domain W3C validator