MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsless Structured version   Visualization version   Unicode version

Theorem prdsless 15409
Description: Closure of the order relation on a structure product. (Contributed by Mario Carneiro, 16-Aug-2015.)
Hypotheses
Ref Expression
prdsbas.p  |-  P  =  ( S X_s R )
prdsbas.s  |-  ( ph  ->  S  e.  V )
prdsbas.r  |-  ( ph  ->  R  e.  W )
prdsbas.b  |-  B  =  ( Base `  P
)
prdsbas.i  |-  ( ph  ->  dom  R  =  I )
prdsle.l  |-  .<_  =  ( le `  P )
Assertion
Ref Expression
prdsless  |-  ( ph  -> 
.<_  C_  ( B  X.  B ) )

Proof of Theorem prdsless
Dummy variables  f 
g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3  |-  P  =  ( S X_s R )
2 prdsbas.s . . 3  |-  ( ph  ->  S  e.  V )
3 prdsbas.r . . 3  |-  ( ph  ->  R  e.  W )
4 prdsbas.b . . 3  |-  B  =  ( Base `  P
)
5 prdsbas.i . . 3  |-  ( ph  ->  dom  R  =  I )
6 prdsle.l . . 3  |-  .<_  =  ( le `  P )
71, 2, 3, 4, 5, 6prdsle 15408 . 2  |-  ( ph  -> 
.<_  =  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) } )
8 vex 3059 . . . . . 6  |-  f  e. 
_V
9 vex 3059 . . . . . 6  |-  g  e. 
_V
108, 9prss 4138 . . . . 5  |-  ( ( f  e.  B  /\  g  e.  B )  <->  { f ,  g } 
C_  B )
1110anbi1i 706 . . . 4  |-  ( ( ( f  e.  B  /\  g  e.  B
)  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) )  <->  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) ) )
1211opabbii 4480 . . 3  |-  { <. f ,  g >.  |  ( ( f  e.  B  /\  g  e.  B
)  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) ) }  =  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) ) }
13 opabssxp 4927 . . 3  |-  { <. f ,  g >.  |  ( ( f  e.  B  /\  g  e.  B
)  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) ) }  C_  ( B  X.  B )
1412, 13eqsstr3i 3474 . 2  |-  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) } 
C_  ( B  X.  B )
157, 14syl6eqss 3493 1  |-  ( ph  -> 
.<_  C_  ( B  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375    = wceq 1454    e. wcel 1897   A.wral 2748    C_ wss 3415   {cpr 3981   class class class wbr 4415   {copab 4473    X. cxp 4850   dom cdm 4852   ` cfv 5600  (class class class)co 6314   Basecbs 15169   lecple 15245   X_scprds 15392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609  ax-cnex 9620  ax-resscn 9621  ax-1cn 9622  ax-icn 9623  ax-addcl 9624  ax-addrcl 9625  ax-mulcl 9626  ax-mulrcl 9627  ax-mulcom 9628  ax-addass 9629  ax-mulass 9630  ax-distr 9631  ax-i2m1 9632  ax-1ne0 9633  ax-1rid 9634  ax-rnegex 9635  ax-rrecex 9636  ax-cnre 9637  ax-pre-lttri 9638  ax-pre-lttrn 9639  ax-pre-ltadd 9640  ax-pre-mulgt0 9641
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-nel 2635  df-ral 2753  df-rex 2754  df-reu 2755  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-pss 3431  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-tp 3984  df-op 3986  df-uni 4212  df-int 4248  df-iun 4293  df-br 4416  df-opab 4475  df-mpt 4476  df-tr 4511  df-eprel 4763  df-id 4767  df-po 4773  df-so 4774  df-fr 4811  df-we 4813  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-pred 5398  df-ord 5444  df-on 5445  df-lim 5446  df-suc 5447  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-riota 6276  df-ov 6317  df-oprab 6318  df-mpt2 6319  df-om 6719  df-1st 6819  df-2nd 6820  df-wrecs 7053  df-recs 7115  df-rdg 7153  df-1o 7207  df-oadd 7211  df-er 7388  df-map 7499  df-ixp 7548  df-en 7595  df-dom 7596  df-sdom 7597  df-fin 7598  df-sup 7981  df-pnf 9702  df-mnf 9703  df-xr 9704  df-ltxr 9705  df-le 9706  df-sub 9887  df-neg 9888  df-nn 10637  df-2 10695  df-3 10696  df-4 10697  df-5 10698  df-6 10699  df-7 10700  df-8 10701  df-9 10702  df-10 10703  df-n0 10898  df-z 10966  df-dec 11080  df-uz 11188  df-fz 11813  df-struct 15171  df-ndx 15172  df-slot 15173  df-base 15174  df-plusg 15251  df-mulr 15252  df-sca 15254  df-vsca 15255  df-ip 15256  df-tset 15257  df-ple 15258  df-ds 15260  df-hom 15262  df-cco 15263  df-prds 15394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator